Nuprl Lemma : provisional-monad_wf
provisional-monad{i:l}() ∈ Monad'
Proof
Definitions occuring in Statement : 
provisional-monad: provisional-monad{i:l}()
, 
monad: Monad
, 
member: t ∈ T
Definitions unfolded in proof : 
provisional-monad: provisional-monad{i:l}()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
allowed: allowed(x)
, 
provision: provision(ok; v)
, 
bind-provision: bind-provision(x;t.f[t])
, 
allow: allow(x)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
true: True
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mk_monad_wf, 
provisional-type_wf, 
istype-universe, 
provision_wf, 
true_wf, 
squash_wf, 
bind-provision_wf, 
provisional-type-equality, 
squash-implies-usquash, 
usquash_wf, 
allowed_wf, 
usquash-elim, 
sq_stable__and, 
sq_stable_usquash, 
sq_stable__allowed, 
sq_stable_from_decidable, 
decidable__true, 
allow_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
sqequalRule, 
isect_memberEquality_alt, 
universeIsType, 
applyEquality, 
functionIsType, 
inhabitedIsType, 
independent_isectElimination, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
equalitySymmetry, 
independent_pairFormation, 
productEquality, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
isectIsTypeImplies
Latex:
provisional-monad\{i:l\}()  \mmember{}  Monad'
Date html generated:
2020_05_20-AM-08_01_11
Last ObjectModification:
2020_05_17-PM-07_57_29
Theory : monads
Home
Index