Nuprl Lemma : provisional-monad_wf

provisional-monad{i:l}() ∈ Monad'


Proof




Definitions occuring in Statement :  provisional-monad: provisional-monad{i:l}() monad: Monad member: t ∈ T
Definitions unfolded in proof :  provisional-monad: provisional-monad{i:l}() member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q allowed: allowed(x) provision: provision(ok; v) bind-provision: bind-provision(x;t.f[t]) allow: allow(x) pi1: fst(t) pi2: snd(t) cand: c∧ B true: True squash: T rev_implies:  Q
Lemmas referenced :  mk_monad_wf provisional-type_wf istype-universe provision_wf true_wf squash_wf bind-provision_wf provisional-type-equality squash-implies-usquash usquash_wf allowed_wf usquash-elim sq_stable__and sq_stable_usquash sq_stable__allowed sq_stable_from_decidable decidable__true allow_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt hypothesisEquality hypothesis universeEquality sqequalRule isect_memberEquality_alt universeIsType applyEquality functionIsType inhabitedIsType independent_isectElimination isect_memberFormation_alt lambdaFormation_alt equalitySymmetry independent_pairFormation productEquality independent_functionElimination natural_numberEquality imageMemberEquality baseClosed because_Cache productElimination dependent_functionElimination axiomEquality functionIsTypeImplies isectIsTypeImplies

Latex:
provisional-monad\{i:l\}()  \mmember{}  Monad'



Date html generated: 2020_05_20-AM-08_01_11
Last ObjectModification: 2020_05_17-PM-07_57_29

Theory : monads


Home Index