Nuprl Lemma : provisional-type-equality

[T:𝕌']. ∀[x,y:Provisional(T)].
  (x y ∈ Provisional(T)) supposing ((allowed(x)  (allow(x) allow(y) ∈ T)) and (allowed(x) ⇐⇒ allowed(y)))


Proof




Definitions occuring in Statement :  allow: allow(x) allowed: allowed(x) provisional-type: Provisional(T) uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q provisional-type: Provisional(T) quotient: x,y:A//B[x; y] prop: so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q implies:  Q subtype_rel: A ⊆B so_apply: x[s1;s2] all: x:A. B[x] cand: c∧ B squash: T allow: allow(x) pi1: fst(t) pi2: snd(t) respects-equality: respects-equality(S;T) guard: {T} allowed: allowed(x) true: True
Lemmas referenced :  quotient-member-eq squash_wf iff_wf pi1_wf equal_wf pi2_wf uimplies_subtype provisional-equiv subtype-respects-equality allowed_wf allow_wf provisional-type_wf istype-universe squash-implies-usquash usquash-implies-squash true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin pointwiseFunctionalityForEquality because_Cache hypothesis sqequalRule pertypeElimination promote_hyp instantiate extract_by_obid isectElimination productEquality universeEquality isectEquality cumulativity hypothesisEquality lambdaEquality_alt universeIsType functionEquality applyEquality independent_functionElimination independent_isectElimination inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairFormation lambdaFormation_alt imageElimination imageMemberEquality baseClosed equalityIstype productIsType sqequalBase functionIsType isect_memberEquality_alt hyp_replacement dependent_set_memberEquality_alt applyLambdaEquality setElimination rename isectIsType axiomEquality isectIsTypeImplies natural_numberEquality

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x,y:Provisional(T)].
    (x  =  y)  supposing  ((allowed(x)  {}\mRightarrow{}  (allow(x)  =  allow(y)))  and  (allowed(x)  \mLeftarrow{}{}\mRightarrow{}  allowed(y)))



Date html generated: 2020_05_20-AM-08_01_01
Last ObjectModification: 2020_05_17-PM-07_17_16

Theory : monads


Home Index