Nuprl Lemma : Moessner_wf
∀[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].  (Moessner(r;x;y;h;d;k) ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
Moessner: Moessner(r;x;y;h;d;k)
, 
power-series: PowerSeries(X;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Moessner: Moessner(r;x;y;h;d;k)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
Lemmas referenced : 
crng_wf, 
power-series_wf, 
Moessner-aux_wf, 
int_seg_wf, 
nat_wf, 
false_wf, 
int_seg_subtype_nat, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
sum_wf, 
fps-slice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
lambdaFormation, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[h:PowerSeries(r)].  \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
    (Moessner(r;x;y;h;d;k)  \mmember{}  PowerSeries(r))
Date html generated:
2016_05_15-PM-10_01_04
Last ObjectModification:
2016_01_16-PM-03_06_51
Theory : power!series
Home
Index