Nuprl Lemma : Moessner_wf

[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].  (Moessner(r;x;y;h;d;k) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Moessner: Moessner(r;x;y;h;d;k) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_apply: x[s]
Lemmas referenced :  crng_wf power-series_wf Moessner-aux_wf int_seg_wf nat_wf false_wf int_seg_subtype_nat le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties sum_wf fps-slice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin atomEquality hypothesisEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality lambdaFormation because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[h:PowerSeries(r)].  \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
    (Moessner(r;x;y;h;d;k)  \mmember{}  PowerSeries(r))



Date html generated: 2016_05_15-PM-10_01_04
Last ObjectModification: 2016_01_16-PM-03_06_51

Theory : power!series


Home Index