Nuprl Lemma : mvp-add_wf

[r:CRng]. ∀[p,q:mv-polynomial(r)].  (mvp-add(r;p;q) ∈ mv-polynomial(r))


Proof




Definitions occuring in Statement :  mvp-add: mvp-add(r;p;q) mv-polynomial: mv-polynomial(r) uall: [x:A]. B[x] member: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mvp-add: mvp-add(r;p;q) mv-polynomial: mv-polynomial(r) prop: fps-support: fps-support(r;f;s) uimplies: supposing a fps-add: (f+g) fps-coeff: f[b] crng: CRng rng: Rng not: ¬A implies:  Q all: x:A. B[x] or: P ∨ Q false: False guard: {T} true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) infix_ap: y
Lemmas referenced :  bag-lub_wf atom-deq_wf fps-add_wf fps-support_wf power-series_wf mv-polynomial_wf crng_wf not_wf sub-bag_wf bag_wf rng_car_wf rng_plus_wf sub-bag-lub rng_zero_wf equal_wf squash_wf true_wf iff_weakening_equal crng_properties rng_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin dependent_pairEquality extract_by_obid isectElimination atomEquality hypothesis hypothesisEquality dependent_set_memberEquality setElimination rename because_Cache setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality lambdaFormation independent_functionElimination dependent_functionElimination inlFormation voidElimination inrFormation natural_numberEquality applyEquality lambdaEquality imageElimination universeEquality independent_isectElimination imageMemberEquality baseClosed

Latex:
\mforall{}[r:CRng].  \mforall{}[p,q:mv-polynomial(r)].    (mvp-add(r;p;q)  \mmember{}  mv-polynomial(r))



Date html generated: 2018_05_21-PM-10_17_24
Last ObjectModification: 2017_07_26-PM-06_36_00

Theory : power!series


Home Index