Nuprl Lemma : mvp-add_wf
∀[r:CRng]. ∀[p,q:mv-polynomial(r)]. (mvp-add(r;p;q) ∈ mv-polynomial(r))
Proof
Definitions occuring in Statement :
mvp-add: mvp-add(r;p;q)
,
mv-polynomial: mv-polynomial(r)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
crng: CRng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
mvp-add: mvp-add(r;p;q)
,
mv-polynomial: mv-polynomial(r)
,
prop: ℙ
,
fps-support: fps-support(r;f;s)
,
uimplies: b supposing a
,
fps-add: (f+g)
,
fps-coeff: f[b]
,
crng: CRng
,
rng: Rng
,
not: ¬A
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
false: False
,
guard: {T}
,
true: True
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
ring_p: IsRing(T;plus;zero;neg;times;one)
,
group_p: IsGroup(T;op;id;inv)
,
monoid_p: IsMonoid(T;op;id)
,
assoc: Assoc(T;op)
,
ident: Ident(T;op;id)
,
infix_ap: x f y
Lemmas referenced :
bag-lub_wf,
atom-deq_wf,
fps-add_wf,
fps-support_wf,
power-series_wf,
mv-polynomial_wf,
crng_wf,
not_wf,
sub-bag_wf,
bag_wf,
rng_car_wf,
rng_plus_wf,
sub-bag-lub,
rng_zero_wf,
equal_wf,
squash_wf,
true_wf,
iff_weakening_equal,
crng_properties,
rng_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairEquality,
extract_by_obid,
isectElimination,
atomEquality,
hypothesis,
hypothesisEquality,
dependent_set_memberEquality,
setElimination,
rename,
because_Cache,
setEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
lambdaFormation,
independent_functionElimination,
dependent_functionElimination,
inlFormation,
voidElimination,
inrFormation,
natural_numberEquality,
applyEquality,
lambdaEquality,
imageElimination,
universeEquality,
independent_isectElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[r:CRng]. \mforall{}[p,q:mv-polynomial(r)]. (mvp-add(r;p;q) \mmember{} mv-polynomial(r))
Date html generated:
2018_05_21-PM-10_17_24
Last ObjectModification:
2017_07_26-PM-06_36_00
Theory : power!series
Home
Index