Nuprl Lemma : compatible-same-dim-cubes-with-interior-point

[k:ℕ]. ∀[a,b:ℚCube(k)].
  (a b ∈ ℚCube(k)) supposing 
     ((∃x:ℕk ⟶ ℚ(rat-point-in-cube-interior(k;x;a) ∧ rat-point-in-cube(k;x;b))) and 
     Compatible(a;b) and 
     (dim(a) dim(b) ∈ ℤ))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) rat-cube-dimension: dim(c) rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) rat-point-in-cube: rat-point-in-cube(k;x;c) rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a exists: x:A. B[x] and: P ∧ Q uiff: uiff(P;Q) prop: nat: subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  compatible-cubes-with-interior-point rat-cube-face-dimension-equal inhabited-rat-cube-iff-point rat-point-in-cube_wf int_seg_wf rationals_wf rat-point-in-cube-interior_wf compatible-rat-cubes_wf istype-int rat-cube-dimension_wf set_subtype_base lelt_wf int_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination isectElimination productElimination because_Cache dependent_pairFormation_alt universeIsType sqequalRule productIsType functionIsType natural_numberEquality setElimination rename isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType equalityIstype applyEquality intEquality lambdaEquality_alt minusEquality addEquality sqequalBase equalitySymmetry

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].
    (a  =  b)  supposing 
          ((\mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  (rat-point-in-cube-interior(k;x;a)  \mwedge{}  rat-point-in-cube(k;x;b)))  and 
          Compatible(a;b)  and 
          (dim(a)  =  dim(b)))



Date html generated: 2020_05_20-AM-09_20_49
Last ObjectModification: 2019_11_14-PM-09_16_24

Theory : rationals


Home Index