Nuprl Lemma : compatible-same-dim-cubes-with-interior-point
∀[k:ℕ]. ∀[a,b:ℚCube(k)].
  (a = b ∈ ℚCube(k)) supposing 
     ((∃x:ℕk ⟶ ℚ. (rat-point-in-cube-interior(k;x;a) ∧ rat-point-in-cube(k;x;b))) and 
     Compatible(a;b) and 
     (dim(a) = dim(b) ∈ ℤ))
Proof
Definitions occuring in Statement : 
compatible-rat-cubes: Compatible(c;d)
, 
rat-cube-dimension: dim(c)
, 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a)
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
compatible-cubes-with-interior-point, 
rat-cube-face-dimension-equal, 
inhabited-rat-cube-iff-point, 
rat-point-in-cube_wf, 
int_seg_wf, 
rationals_wf, 
rat-point-in-cube-interior_wf, 
compatible-rat-cubes_wf, 
istype-int, 
rat-cube-dimension_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
isectElimination, 
productElimination, 
because_Cache, 
dependent_pairFormation_alt, 
universeIsType, 
sqequalRule, 
productIsType, 
functionIsType, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
equalityIstype, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
minusEquality, 
addEquality, 
sqequalBase, 
equalitySymmetry
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a,b:\mBbbQ{}Cube(k)].
    (a  =  b)  supposing 
          ((\mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  (rat-point-in-cube-interior(k;x;a)  \mwedge{}  rat-point-in-cube(k;x;b)))  and 
          Compatible(a;b)  and 
          (dim(a)  =  dim(b)))
Date html generated:
2020_05_20-AM-09_20_49
Last ObjectModification:
2019_11_14-PM-09_16_24
Theory : rationals
Home
Index