Nuprl Lemma : inhabited-rat-cube-iff-point
∀[k:ℕ]. ∀c:ℚCube(k). uiff(↑Inhabited(c);∃x:ℕk ⟶ ℚ. rat-point-in-cube(k;x;c))
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c)
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rational-cube: ℚCube(k)
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
rational-interval: ℚInterval
, 
pi1: fst(t)
, 
prop: ℙ
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
inhabited-rat-interval: Inhabited(I)
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
assert_witness, 
inhabited-rat-interval_wf, 
int_seg_wf, 
istype-assert, 
rationals_wf, 
qle_wf, 
rational-cube_wf, 
istype-nat, 
inhabited-rat-cube_wf, 
iff_weakening_uiff, 
assert_wf, 
assert-inhabited-rat-cube, 
rat-point-in-cube_wf, 
qle_reflexivity, 
qle_witness, 
assert-q_le-eq, 
iff_weakening_equal, 
q_le_wf, 
qle_transitivity_qorder
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
introduction, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
functionIsType, 
universeIsType, 
natural_numberEquality, 
setElimination, 
productElimination, 
productIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionEquality, 
promote_hyp, 
dependent_pairFormation_alt, 
independent_pairEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}c:\mBbbQ{}Cube(k).  uiff(\muparrow{}Inhabited(c);\mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  rat-point-in-cube(k;x;c))
Date html generated:
2020_05_20-AM-09_18_25
Last ObjectModification:
2019_11_02-PM-04_30_23
Theory : rationals
Home
Index