Nuprl Lemma : inhabited-rat-cube-iff-point

[k:ℕ]. ∀c:ℚCube(k). uiff(↑Inhabited(c);∃x:ℕk ⟶ ℚrat-point-in-cube(k;x;c))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) rat-point-in-cube: rat-point-in-cube(k;x;c) rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  rat-point-in-cube: rat-point-in-cube(k;x;c) uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T rational-cube: Cube(k) implies:  Q nat: exists: x:A. B[x] rational-interval: Interval pi1: fst(t) prop: pi2: snd(t) iff: ⇐⇒ Q rev_implies:  Q inhabited-rat-interval: Inhabited(I) cand: c∧ B guard: {T}
Lemmas referenced :  assert_witness inhabited-rat-interval_wf int_seg_wf istype-assert rationals_wf qle_wf rational-cube_wf istype-nat inhabited-rat-cube_wf iff_weakening_uiff assert_wf assert-inhabited-rat-cube rat-point-in-cube_wf qle_reflexivity qle_witness assert-q_le-eq iff_weakening_equal q_le_wf qle_transitivity_qorder
Rules used in proof :  cut sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt independent_pairFormation introduction sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality because_Cache hypothesis independent_functionElimination functionIsTypeImplies inhabitedIsType rename functionIsType universeIsType natural_numberEquality setElimination productElimination productIsType equalityIstype equalityTransitivity equalitySymmetry independent_isectElimination functionEquality promote_hyp dependent_pairFormation_alt independent_pairEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}c:\mBbbQ{}Cube(k).  uiff(\muparrow{}Inhabited(c);\mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  rat-point-in-cube(k;x;c))



Date html generated: 2020_05_20-AM-09_18_25
Last ObjectModification: 2019_11_02-PM-04_30_23

Theory : rationals


Home Index