Nuprl Lemma : rat-cube-face-dimension-equal

[k:ℕ]. ∀[c:ℚCube(k)].  ∀f:ℚCube(k). (f c ∈ ℚCube(k)) supposing ((dim(f) dim(c) ∈ ℤand f ≤ c) supposing ↑Inhabited\000C(c)


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q true: True decidable: Dec(P) less_than': less_than'(a;b) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rat-cube-dimension: dim(c) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k or: P ∨ Q rat-cube-face: c ≤ d guard: {T} rational-cube: Cube(k) prop: so_apply: x[s] nat: so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B and: P ∧ Q uiff: uiff(P;Q) implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal assert_of_eq_int sum_le false_wf int_term_value_subtract_lemma int_term_value_add_lemma itermSubtract_wf itermAdd_wf subtract-is-int-iff eq_int_wf ifthenelse_wf sum_wf istype-less_than istype-le int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le iff_weakening_equal subtype_rel_self true_wf squash_wf less_than_wf int_formula_prop_not_lemma intformnot_wf decidable__lt rat-interval-dimension_wf istype-false int_seg_subtype_nat Error :isolate_summand2,  assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert not_wf bnot_wf assert_wf bool_wf equal-wf-T-base int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma intformeq_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_properties int_seg_properties int_seg_wf rat-interval-face-dimension istype-nat rational-cube_wf inhabited-rat-cube_wf istype-assert rat-cube-face_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf istype-int assert-inhabited-rat-cube inhabited-rat-cube-face
Rules used in proof :  applyLambdaEquality hyp_replacement closedConclusion baseApply promote_hyp pointwiseFunctionality productIsType dependent_set_memberEquality_alt universeEquality instantiate imageMemberEquality equalityElimination baseClosed independent_pairFormation voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation equalityTransitivity imageElimination unionElimination functionExtensionality functionIsTypeImplies universeIsType inhabitedIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt equalitySymmetry sqequalBase rename setElimination addEquality natural_numberEquality minusEquality lambdaEquality_alt intEquality sqequalRule applyEquality equalityIstype independent_isectElimination productElimination because_Cache dependent_functionElimination hypothesis independent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    \mforall{}f:\mBbbQ{}Cube(k).  (f  =  c)  supposing  ((dim(f)  =  dim(c))  and  f  \mleq{}  c)  supposing  \muparrow{}Inha\000Cbited(c)



Date html generated: 2019_10_29-AM-07_52_39
Last ObjectModification: 2019_10_18-AM-11_05_23

Theory : rationals


Home Index