Nuprl Lemma : q-floor_wf

[r:ℚ]. ([r] ∈ ℤ)


Proof




Definitions occuring in Statement :  q-floor: [r] rationals: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-floor: [r] all: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top
Lemmas referenced :  pi1_wf_top rat-int-part_wf2 subtype_rel_set rationals_wf and_wf qle_wf int-subtype-rationals qless_wf top_wf equal_wf qadd_wf subtype_rel_product
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality dependent_functionElimination hypothesisEquality hypothesis applyEquality productEquality setEquality natural_numberEquality because_Cache lambdaEquality spreadEquality setElimination rename independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:\mBbbQ{}].  ([r]  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-11_34_40
Last ObjectModification: 2015_12_27-PM-07_27_46

Theory : rationals


Home Index