Nuprl Lemma : q-triangle-inequality2

[x,y,z:ℚ].  (|x z| ≤ (|x y| |y z|))


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qsub: s qadd: s rationals: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B true: True qsub: s squash: T prop: and: P ∧ Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  iff_weakening_equal qadd_inv_assoc_q qadd_ac_1_q mon_assoc_q true_wf squash_wf qle_wf int-subtype-rationals qmul_wf rationals_wf qadd_wf qabs_wf qle_witness qsub_wf q-triangle-inequality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache minusEquality natural_numberEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality productElimination independent_isectElimination

Latex:
\mforall{}[x,y,z:\mBbbQ{}].    (|x  -  z|  \mleq{}  (|x  -  y|  +  |y  -  z|))



Date html generated: 2016_05_15-PM-11_32_23
Last ObjectModification: 2016_01_16-PM-09_14_31

Theory : rationals


Home Index