Nuprl Lemma : qlfs-min-val_wf

[n:ℕ]. ∀[lfs:q-linear-form(n) List]. ∀[p:ℚ^n].  qlfs-min-val(lfs;p) ∈ ℚ supposing 0 < ||lfs||


Proof




Definitions occuring in Statement :  qlfs-min-val: qlfs-min-val(lfs;p) q-linear-form: q-linear-form(n) qvn: ^n rationals: length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qlfs-min-val: qlfs-min-val(lfs;p) top: Top prop:
Lemmas referenced :  qmin-list_wf map_wf q-linear-form_wf rationals_wf qlf-val_wf map-length less_than_wf length_wf qvn_wf list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[lfs:q-linear-form(n)  List].  \mforall{}[p:\mBbbQ{}\^{}n].    qlfs-min-val(lfs;p)  \mmember{}  \mBbbQ{}  supposing  0  <  ||lfs||



Date html generated: 2016_05_15-PM-11_22_49
Last ObjectModification: 2015_12_27-PM-07_32_26

Theory : rationals


Home Index