Nuprl Lemma : qlfs-min-val_wf
∀[n:ℕ]. ∀[lfs:q-linear-form(n) List]. ∀[p:ℚ^n].  qlfs-min-val(lfs;p) ∈ ℚ supposing 0 < ||lfs||
Proof
Definitions occuring in Statement : 
qlfs-min-val: qlfs-min-val(lfs;p)
, 
q-linear-form: q-linear-form(n)
, 
qvn: ℚ^n
, 
rationals: ℚ
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qlfs-min-val: qlfs-min-val(lfs;p)
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
qmin-list_wf, 
map_wf, 
q-linear-form_wf, 
rationals_wf, 
qlf-val_wf, 
map-length, 
less_than_wf, 
length_wf, 
qvn_wf, 
list_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[lfs:q-linear-form(n)  List].  \mforall{}[p:\mBbbQ{}\^{}n].    qlfs-min-val(lfs;p)  \mmember{}  \mBbbQ{}  supposing  0  <  ||lfs||
Date html generated:
2016_05_15-PM-11_22_49
Last ObjectModification:
2015_12_27-PM-07_32_26
Theory : rationals
Home
Index