Nuprl Lemma : truncate-rational_wf
∀q:ℚ. ∀e:{e:ℚ| 0 < e} .  (truncate-rational(q;e) ∈ ∃q':ℚ [(|q - q'| ≤ e)])
Proof
Definitions occuring in Statement : 
truncate-rational: truncate-rational(q;e)
, 
qabs: |r|
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
rational-truncate, 
ifthenelse: if b then t else f fi 
, 
rational-truncate1, 
truncate-rational: truncate-rational(q;e)
Lemmas referenced : 
rational-truncate, 
subtype_rel_self, 
rationals_wf, 
all_wf, 
qless_wf, 
sq_exists_wf, 
qle_wf, 
qabs_wf, 
qsub_wf, 
set_wf, 
int-subtype-rationals, 
rational-truncate1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}q:\mBbbQ{}.  \mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .    (truncate-rational(q;e)  \mmember{}  \mexists{}q':\mBbbQ{}  [(|q  -  q'|  \mleq{}  e)])
Date html generated:
2018_05_22-AM-00_31_28
Last ObjectModification:
2018_05_19-PM-04_10_18
Theory : rationals
Home
Index