Nuprl Lemma : rational-truncate1

q:ℚ. ∀e:{e:ℚ0 < e ∧ e < 1} .  (∃p:ℤ × ℕ+ [((|q (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) e) ≤ 2))])


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) qmul: s rationals: nat_plus: + pi1: fst(t) pi2: snd(t) all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T has-value: (a)↓ and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a not: ¬A implies:  Q guard: {T} false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bnot: ¬bb bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) iff: ⇐⇒ Q rev_implies:  Q sq_exists: x:A [B[x]] nat_plus: + int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: less_than: a < b less_than': less_than'(a;b) or: P ∨ Q sq_type: SQType(T)
Lemmas referenced :  value-type-has-value qless_wf subtract_wf qdiv_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity equal-wf-T-base rationals_wf qle_wf int-subtype-rationals set-value-type int-value-type rat-int-bound_wf set_wf equal_wf less_than_wf qmul_wf squash_wf sq_stable__and sq_stable__less_than sq_stable_from_decidable decidable__qle qle_witness qmul_preserves_qless true_wf qmul_zero_qrng qmul-qdiv-cancel iff_weakening_equal qless-int qmul_preserves_qle2 qle_weakening_lt_qorder qmul_com qadd_preserves_qle qsub-sub qsub_wf qless_witness qadd_wf qadd_preserves_qless qmul_comm_qrng qmul_one_qrng qadd_assoc mon_ident_q qmul_over_plus_qrng qmul_over_minus_qrng qadd_comm_q qadd_inv_assoc_q integer-part_wf subtype_rel_set qabs_wf int_nzero-rational subtype_rel_sets nequal_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base qabs-qdiv not_wf qmul-preserves-eq qabs-abs absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot intformnot_wf int_formula_prop_not_lemma integer-fractional-parts fractional-part_wf mon_assoc_q qadd_ac_1_q qinverse_q qabs-of-nonneg qmul_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation setElimination thin rename introduction sqequalRule callbyvalueReduce sqequalHypSubstitution productElimination cut extract_by_obid isectElimination setEquality intEquality productEquality hypothesisEquality natural_numberEquality hypothesis applyEquality because_Cache independent_isectElimination voidElimination baseClosed lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isect_memberEquality independent_pairFormation independent_pairEquality imageMemberEquality imageElimination universeEquality isect_memberFormation minusEquality dependent_set_memberEquality applyLambdaEquality dependent_pairFormation int_eqEquality voidEquality computeAll hyp_replacement unionElimination equalityElimination lessCases sqequalAxiom promote_hyp instantiate cumulativity

Latex:
\mforall{}q:\mBbbQ{}.  \mforall{}e:\{e:\mBbbQ{}|  0  <  e  \mwedge{}  e  <  1\}  .    (\mexists{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}  [((|q  -  (fst(p)/snd(p))|  \mleq{}  e)  \mwedge{}  (((snd(p))  *  e)  \mleq{}  2))])



Date html generated: 2018_05_22-AM-00_31_11
Last ObjectModification: 2017_07_26-PM-06_58_52

Theory : rationals


Home Index