Nuprl Lemma : qabs-of-nonneg

[q:ℚ]. |q| q ∈ ℚ supposing 0 ≤ q


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qabs: |r| callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) prop: subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff not: ¬A
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce qle_wf int-subtype-rationals qpositive_wf bool_wf equal-wf-T-base assert_wf qless_wf bnot_wf not_wf equal_wf squash_wf true_wf qinv_id_q iff_weakening_equal qmul_wf uiff_transitivity eqtt_to_assert assert-qpositive iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot qless_complement_qorder qle_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce natural_numberEquality applyEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry baseClosed lambdaEquality imageElimination universeEquality imageMemberEquality productElimination independent_functionElimination hyp_replacement applyLambdaEquality minusEquality lambdaFormation unionElimination equalityElimination independent_pairFormation impliesFunctionality dependent_functionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  |q|  =  q  supposing  0  \mleq{}  q



Date html generated: 2018_05_21-PM-11_52_43
Last ObjectModification: 2017_07_26-PM-06_45_12

Theory : rationals


Home Index