Nuprl Lemma : qabs-abs

[x:ℤ]. (|x| |x|)


Proof




Definitions occuring in Statement :  qabs: |r| absval: |i| uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] absval: |i| qabs: |r| qmul: s qpositive: qpositive(r) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt has-value: (a)↓ has-valueall: has-valueall(a) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base valueall-type-has-valueall int-valueall-type evalall-reduce value-type-has-value int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_less_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot itermMultiply_wf itermMinus_wf int_term_value_mul_lemma int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality callbyvalueReduce sqleReflexivity isintReduceTrue minusEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom lambdaFormation unionElimination equalityElimination productElimination lessCases isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation int_eqEquality computeAll dependent_set_memberEquality promote_hyp multiplyEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \msim{}  |x|)



Date html generated: 2018_05_21-PM-11_51_31
Last ObjectModification: 2017_07_26-PM-06_44_33

Theory : rationals


Home Index