Nuprl Lemma : nat-trans-assoc-equation
∀[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[T:nat-trans(C;D;F;G)]. ∀[A,B,B':cat-ob(C)]. ∀[g:cat-arrow(C) A B].
∀[h:cat-arrow(C) B B'].
  ((cat-comp(D) (F A) (G B) (G B') (cat-comp(D) (F A) (F B) (G B) (F A B g) (T B)) (G B B' h))
  = (cat-comp(D) (F A) (F B') (G B') (cat-comp(D) (F A) (F B) (F B') (F A B g) (F B B' h)) (T B'))
  ∈ (cat-arrow(D) (F A) (G B')))
Proof
Definitions occuring in Statement : 
nat-trans: nat-trans(C;D;F;G)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat-trans: nat-trans(C;D;F;G)
, 
true: True
, 
label: ...$L... t
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
nat-trans-equation, 
cat-comp_wf, 
cat-arrow_wf, 
cat-ob_wf, 
nat-trans_wf, 
cat-functor_wf, 
small-category_wf, 
functor-ob_wf, 
functor-arrow_wf, 
equal_wf, 
cat-comp-assoc, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
istype-universe, 
functor-arrow-comp, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
setElimination, 
rename, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
instantiate, 
universeEquality
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[T:nat-trans(C;D;F;G)].  \mforall{}[A,B,B':cat-ob(C)].
\mforall{}[g:cat-arrow(C)  A  B].  \mforall{}[h:cat-arrow(C)  B  B'].
    ((cat-comp(D)  (F  A)  (G  B)  (G  B')  (cat-comp(D)  (F  A)  (F  B)  (G  B)  (F  A  B  g)  (T  B))  (G  B  B'  h))
    =  (cat-comp(D)  (F  A)  (F  B')  (G  B')  (cat-comp(D)  (F  A)  (F  B)  (F  B')  (F  A  B  g)  (F  B  B'  h))  (T  B')))
Date html generated:
2020_05_20-AM-07_51_21
Last ObjectModification:
2020_01_04-PM-05_22_31
Theory : small!categories
Home
Index