Nuprl Lemma : nat-trans-assoc-equation

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[T:nat-trans(C;D;F;G)]. ∀[A,B,B':cat-ob(C)]. ∀[g:cat-arrow(C) B].
[h:cat-arrow(C) B'].
  ((cat-comp(D) (F A) (G B) (G B') (cat-comp(D) (F A) (F B) (G B) (F g) (T B)) (G B' h))
  (cat-comp(D) (F A) (F B') (G B') (cat-comp(D) (F A) (F B) (F B') (F g) (F B' h)) (T B'))
  ∈ (cat-arrow(D) (F A) (G B')))


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat-trans: nat-trans(C;D;F;G) true: True label: ...$L... t squash: T all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  nat-trans-equation cat-comp_wf cat-arrow_wf cat-ob_wf nat-trans_wf cat-functor_wf small-category_wf functor-ob_wf functor-arrow_wf equal_wf cat-comp-assoc iff_weakening_equal squash_wf true_wf istype-universe functor-arrow-comp subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis universeIsType because_Cache inhabitedIsType setElimination rename natural_numberEquality lambdaEquality_alt imageElimination dependent_functionElimination sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination hyp_replacement instantiate universeEquality

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[T:nat-trans(C;D;F;G)].  \mforall{}[A,B,B':cat-ob(C)].
\mforall{}[g:cat-arrow(C)  A  B].  \mforall{}[h:cat-arrow(C)  B  B'].
    ((cat-comp(D)  (F  A)  (G  B)  (G  B')  (cat-comp(D)  (F  A)  (F  B)  (G  B)  (F  A  B  g)  (T  B))  (G  B  B'  h))
    =  (cat-comp(D)  (F  A)  (F  B')  (G  B')  (cat-comp(D)  (F  A)  (F  B)  (F  B')  (F  A  B  g)  (F  B  B'  h))  (T  B')))



Date html generated: 2020_05_20-AM-07_51_21
Last ObjectModification: 2020_01_04-PM-05_22_31

Theory : small!categories


Home Index