Nuprl Lemma : stable-element-predicate_wf1

[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}].
  (stable-element-predicate(C;F;I,rho.P[I;rho]) ∈ ℙ{[i j]})


Proof




Definitions occuring in Statement :  stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] presheaf: Presheaf(C) uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_apply: x[s1;s2] cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat so_apply: x[s] cat-ob: cat-ob(C)
Lemmas referenced :  presheaf_wf1 all_wf cat-ob_wf cat-arrow_wf functor-ob_wf op-cat_wf small-category-cumulativity-2 type-cat_wf subtype_rel-equal cat_ob_op_lemma functor-arrow_wf op-cat-arrow subtype_rel_self small-category_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule instantiate applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality because_Cache independent_isectElimination dependent_functionElimination functionEquality Error :memTop,  inhabitedIsType equalityTransitivity equalitySymmetry axiomEquality functionIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:presheaf\{j:l\}(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}\{j\}].
    (stable-element-predicate(C;F;I,rho.P[I;rho])  \mmember{}  \mBbbP{}\{[i  |  j]\})



Date html generated: 2020_05_20-AM-07_57_19
Last ObjectModification: 2020_04_03-AM-11_18_30

Theory : small!categories


Home Index