Nuprl Lemma : stable-element-predicate_wf1
∀[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ{j}].
  (stable-element-predicate(C;F;I,rho.P[I;rho]) ∈ ℙ{[i | j]})
Proof
Definitions occuring in Statement : 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]), 
presheaf: Presheaf(C), 
functor-ob: ob(F), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
presheaf: Presheaf(C), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s1;s2], 
cat-arrow: cat-arrow(C), 
pi1: fst(t), 
pi2: snd(t), 
type-cat: TypeCat, 
so_apply: x[s], 
cat-ob: cat-ob(C)
Lemmas referenced : 
presheaf_wf1, 
all_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor-ob_wf, 
op-cat_wf, 
small-category-cumulativity-2, 
type-cat_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
functor-arrow_wf, 
op-cat-arrow, 
subtype_rel_self, 
small-category_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
instantiate, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
functionEquality, 
Error :memTop, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:presheaf\{j:l\}(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}\{j\}].
    (stable-element-predicate(C;F;I,rho.P[I;rho])  \mmember{}  \mBbbP{}\{[i  |  j]\})
 Date html generated: 
2020_05_20-AM-07_57_19
 Last ObjectModification: 
2020_04_03-AM-11_18_30
Theory : small!categories
Home
Index