Nuprl Lemma : member-bs_tree_max
∀[E:Type]
  ∀tr:bs_tree(E). ∀d,z:E.
    ((z ∈ snd(bs_tree_max(tr;d)) ∨ (z = (fst(bs_tree_max(tr;d))) ∈ E)) ⇒ (z ∈ tr ∨ ((↑bst_null?(tr)) ∧ (z = d ∈ E))))
Proof
Definitions occuring in Statement : 
bs_tree_max: bs_tree_max(tr;d), 
member_bs_tree: x ∈ tr, 
bst_null?: bst_null?(v), 
bs_tree: bs_tree(E), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
and: P ∧ Q, 
so_apply: x[s], 
guard: {T}, 
member_bs_tree: x ∈ tr, 
bs_tree_max: bs_tree_max(tr;d), 
bst_null: bst_null(), 
bs_tree_ind: bs_tree_ind, 
bst_null?: bst_null?(v), 
pi1: fst(t), 
eq_atom: x =a y, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
pi2: snd(t), 
false: False, 
cand: A c∧ B, 
true: True, 
bst_leaf: bst_leaf(value), 
bfalse: ff, 
bst_node: bst_node(left;value;right), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb
Lemmas referenced : 
bs_tree-induction, 
all_wf, 
or_wf, 
member_bs_tree_wf, 
equal_wf, 
assert_wf, 
bst_null?_wf, 
bs_tree_wf, 
false_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bs_tree_max_wf1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
functionEquality, 
lambdaFormation, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
unionElimination, 
voidElimination, 
inrFormation, 
natural_numberEquality, 
independent_pairFormation, 
inlFormation, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[E:Type]
    \mforall{}tr:bs\_tree(E).  \mforall{}d,z:E.
        ((z  \mmember{}  snd(bs\_tree\_max(tr;d))  \mvee{}  (z  =  (fst(bs\_tree\_max(tr;d)))))
        {}\mRightarrow{}  (z  \mmember{}  tr  \mvee{}  ((\muparrow{}bst\_null?(tr))  \mwedge{}  (z  =  d))))
Date html generated:
2017_10_01-AM-08_31_19
Last ObjectModification:
2017_07_26-PM-04_25_01
Theory : tree_1
Home
Index