Nuprl Lemma : member-bs_tree_max

[E:Type]
  ∀tr:bs_tree(E). ∀d,z:E.
    ((z ∈ snd(bs_tree_max(tr;d)) ∨ (z (fst(bs_tree_max(tr;d))) ∈ E))  (z ∈ tr ∨ ((↑bst_null?(tr)) ∧ (z d ∈ E))))


Proof




Definitions occuring in Statement :  bs_tree_max: bs_tree_max(tr;d) member_bs_tree: x ∈ tr bst_null?: bst_null?(v) bs_tree: bs_tree(E) assert: b uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: all: x:A. B[x] or: P ∨ Q and: P ∧ Q so_apply: x[s] guard: {T} member_bs_tree: x ∈ tr bs_tree_max: bs_tree_max(tr;d) bst_null: bst_null() bs_tree_ind: bs_tree_ind bst_null?: bst_null?(v) pi1: fst(t) eq_atom: =a y assert: b ifthenelse: if then else fi  btrue: tt pi2: snd(t) false: False cand: c∧ B true: True bst_leaf: bst_leaf(value) bfalse: ff bst_node: bst_node(left;value;right) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  bs_tree-induction all_wf or_wf member_bs_tree_wf equal_wf assert_wf bst_null?_wf bs_tree_wf false_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bs_tree_max_wf1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache functionEquality lambdaFormation equalityTransitivity hypothesis equalitySymmetry dependent_functionElimination independent_functionElimination productEquality universeEquality unionElimination voidElimination inrFormation natural_numberEquality independent_pairFormation inlFormation equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate

Latex:
\mforall{}[E:Type]
    \mforall{}tr:bs\_tree(E).  \mforall{}d,z:E.
        ((z  \mmember{}  snd(bs\_tree\_max(tr;d))  \mvee{}  (z  =  (fst(bs\_tree\_max(tr;d)))))
        {}\mRightarrow{}  (z  \mmember{}  tr  \mvee{}  ((\muparrow{}bst\_null?(tr))  \mwedge{}  (z  =  d))))



Date html generated: 2017_10_01-AM-08_31_19
Last ObjectModification: 2017_07_26-PM-04_25_01

Theory : tree_1


Home Index