Nuprl Lemma : tree_node?_wf
∀[E:Type]. ∀[v:tree(E)].  (tree_node?(v) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
tree_node?: tree_node?(v)
, 
tree: tree(E)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
tree_leaf: tree_leaf(value)
, 
tree_node?: tree_node?(v)
, 
pi1: fst(t)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
tree_node: tree_node(left;right)
Lemmas referenced : 
tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
bfalse_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
btrue_wf, 
tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
applyEquality, 
sqequalRule, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
voidElimination, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}[v:tree(E)].    (tree\_node?(v)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_30_30
Last ObjectModification:
2017_07_26-PM-04_24_36
Theory : tree_1
Home
Index