Nuprl Lemma : funtype-auto-test-case
∀m:ℕ. ∀A:ℕm ⟶ Type. ∀x:⋂x:Type. (x ⟶ x). ∀T:Type.  (x ∈ funtype(0;A;T) ⟶ T)
Proof
Definitions occuring in Statement : 
funtype: funtype(n;A;T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
funtype: funtype(n;A;T)
, 
primrec: primrec(n;b;c)
Lemmas referenced : 
funtype_wf, 
false_wf, 
le_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_rel_self, 
equal_wf, 
nat_wf
Rules used in proof : 
comment, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
isectElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
thin, 
cumulativity, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
instantiate, 
setElimination, 
rename, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
functionExtensionality, 
independent_functionElimination, 
isectEquality
Latex:
\mforall{}m:\mBbbN{}.  \mforall{}A:\mBbbN{}m  {}\mrightarrow{}  Type.  \mforall{}x:\mcap{}x:Type.  (x  {}\mrightarrow{}  x).  \mforall{}T:Type.    (x  \mmember{}  funtype(0;A;T)  {}\mrightarrow{}  T)
Date html generated:
2017_10_01-AM-08_39_47
Last ObjectModification:
2017_07_26-PM-04_27_44
Theory : untyped!computation
Home
Index