Nuprl Lemma : mk_applies_lambdas_fun
∀[F,G:Top]. ∀[m:ℕ]. ∀[n:ℕm + 1].
  (mk_applies(mk_lambdas_fun(F;m);G;n) ~ mk_lambdas_fun(λg.(F (λx.(g mk_applies(x;G;n))));m - n))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m), 
mk_lambdas_fun: mk_lambdas_fun(F;m), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
mk_applies: mk_applies(F;G;m), 
sq_type: SQType(T), 
guard: {T}, 
nat_plus: ℕ+
Lemmas referenced : 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_seg_subtype_nat, 
istype-false, 
ge_wf, 
istype-less_than, 
primrec0_lemma, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
mk_lambdas_fun-eta, 
istype-le, 
subtract-1-ge-0, 
int_seg_wf, 
istype-nat, 
istype-top, 
primrec1_lemma, 
mk_lambdas_fun-unroll-first, 
decidable__lt, 
subtract_wf, 
mk_applies_unroll, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
imageElimination, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
addEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
instantiate, 
cumulativity, 
intEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
isectIsTypeImplies, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[F,G:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_applies(mk\_lambdas\_fun(F;m);G;n)  \msim{}  mk\_lambdas\_fun(\mlambda{}g.(F  (\mlambda{}x.(g  mk\_applies(x;G;n))));m  -  n))
Date html generated:
2020_05_20-AM-07_49_17
Last ObjectModification:
2019_11_27-PM-04_19_28
Theory : untyped!computation
Home
Index