Nuprl Lemma : mk_applies_lambdas_fun1
∀[F,G:Top]. ∀[m:ℕ]. ∀[n:ℕm + 1].
  (mk_applies(mk_lambdas_fun(F;n);G;m) ~ mk_applies(F (λx.mk_applies(x;G;n));λi.(G (n + i));m - n))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
top_wf, 
nat_wf, 
int_seg_wf, 
mk_applies_lambdas_fun0, 
mk_applies_split, 
int_subtype_base, 
subtype_base_sq, 
equal_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
le_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtract_wf, 
int_seg_properties
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
because_Cache, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[F,G:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_applies(mk\_lambdas\_fun(F;n);G;m)  \msim{}  mk\_applies(F  (\mlambda{}x.mk\_applies(x;G;n));\mlambda{}i.(G  (n  +  i));m  -  n))
Date html generated:
2016_05_15-PM-02_11_46
Last ObjectModification:
2016_01_15-PM-10_20_04
Theory : untyped!computation
Home
Index