Nuprl Lemma : mk_applies_lambdas_fun0
∀[F,G:Top]. ∀[m:ℕ].  (mk_applies(mk_lambdas_fun(F;m);G;m) ~ F (λx.mk_applies(x;G;m)))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
mk_lambdas-fun: mk_lambdas-fun(F;G;n;m)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_le_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
bool_cases, 
int_formula_prop_le_lemma, 
intformle_wf, 
le_wf, 
not_wf, 
bnot_wf, 
assert_wf, 
le_int_wf, 
top_wf, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
intformeq_wf, 
decidable__equal_int, 
nat_properties, 
int_subtype_base, 
subtype_base_sq, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
mk_applies_lambdas_fun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
hypothesis, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
productElimination, 
because_Cache, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
cumulativity, 
lambdaFormation, 
impliesFunctionality
Latex:
\mforall{}[F,G:Top].  \mforall{}[m:\mBbbN{}].    (mk\_applies(mk\_lambdas\_fun(F;m);G;m)  \msim{}  F  (\mlambda{}x.mk\_applies(x;G;m)))
Date html generated:
2016_05_15-PM-02_11_43
Last ObjectModification:
2016_01_15-PM-10_20_02
Theory : untyped!computation
Home
Index