Nuprl Lemma : simple-cbva-seq-spread0
∀[F,G,H,L:Top].  (let x,y = simple-cbva-seq(L;<F, G>0) in H[x;y] ~ simple-cbva-seq(L;H[F;G];0))
Proof
Definitions occuring in Statement : 
simple-cbva-seq: simple-cbva-seq(L;F;m), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
spread: spread def, 
pair: <a, b>, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
simple-cbva-seq: simple-cbva-seq(L;F;m), 
cbva-seq: cbva-seq(L;F;m), 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m), 
ifthenelse: if b then t else f fi , 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
bfalse: ff, 
btrue: tt, 
eq_int: (i =z j), 
subtract: n - m, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
false: False, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
btrue_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
top_wf, 
eqff_to_assert, 
le_int_wf, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
hypothesisEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[F,G,H,L:Top].    (let  x,y  =  simple-cbva-seq(L;<F,  G>0)  in  H[x;y]  \msim{}  simple-cbva-seq(L;H[F;G];0))
Date html generated:
2017_10_01-AM-08_41_25
Last ObjectModification:
2017_07_26-PM-04_28_38
Theory : untyped!computation
Home
Index