Nuprl Lemma : bpa-norm-equiv

p:{2...}. ∀x:basic-padic(p).  bpa-equiv(p;x;bpa-norm(p;x))


Proof




Definitions occuring in Statement :  bpa-norm: bpa-norm(p;x) bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] basic-padic: basic-padic(p) bpa-norm: bpa-norm(p;x) bpa-equiv: bpa-equiv(p;x;y) member: t ∈ T uall: [x:A]. B[x] int_upper: {i...} nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  top: Top bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  squash: T nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True p-adics: p-adics(p) int_seg: {i..j-} satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] subtract: m lelt: i ≤ j < k so_apply: x[s] nequal: a ≠ b ∈  p-units: p-units(p) crng: CRng rng: Rng p-adic-ring: (p) ring_p: IsRing(T;plus;zero;neg;times;one) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) bilinear: BiLinear(T;pl;tm) ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) infix_ap: y comm: Comm(T;op)
Lemmas referenced :  basic-padic_wf int_upper_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int exp0_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat false_wf nat_properties nequal-le-implies zero-add le_wf int_subtype_base p-mul_wf squash_wf true_wf p-adics_wf nat_plus_wf decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf p-int_wf int_seg_wf exp_wf2 p-adic-property nat_plus_properties int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf nat_plus_subtype_nat p-mul-1 p-shift_wf subtype_rel_self iff_weakening_equal p-shift-mul all_wf eqmod_wf less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma p-unitize_wf not-equal-2 p-units_wf int_seg_subtype_nat subtract_wf itermSubtract_wf int_term_value_subtract_lemma p-adic-ring_wf crng_properties rng_properties exp_add subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma p-mul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination because_Cache hypothesis_subsumption independent_pairFormation dependent_set_memberEquality intEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed addEquality approximateComputation int_eqEquality universeEquality functionEquality minusEquality applyLambdaEquality productEquality setEquality equalityUniverse levelHypothesis

Latex:
\mforall{}p:\{2...\}.  \mforall{}x:basic-padic(p).    bpa-equiv(p;x;bpa-norm(p;x))



Date html generated: 2018_05_21-PM-03_25_20
Last ObjectModification: 2018_05_19-AM-08_23_15

Theory : rings_1


Home Index