Nuprl Lemma : groupoid-edges-commute
∀G:Groupoid. ∀I:Cname List. ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀box:open_box(cubical-nerve(fst(G));I;J;x;i).
  ((∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname)))
  
⇒ edge-arrows-commute(fst(G);I;λc.nerve_box_label(box;c);λy,c. nerve_box_edge(box;c;y)))
Proof
Definitions occuring in Statement : 
nerve_box_edge: nerve_box_edge(box;c;y)
, 
nerve_box_label: nerve_box_label(box;L)
, 
cubical-nerve: cubical-nerve(X)
, 
edge-arrows-commute: edge-arrows-commute(C;I;L;E)
, 
open_box: open_box(X;I;J;x;i)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
l_exists: (∃x∈L. P[x])
, 
list: T List
, 
int_seg: {i..j-}
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
groupoid: Groupoid
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
edge-arrows-commute: edge-arrows-commute(C;I;L;E)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
groupoid: Groupoid
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
name-morph: name-morph(I;J)
, 
open_box: open_box(X;I;J;x;i)
, 
not: ¬A
, 
false: False
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
respects-equality: respects-equality(S;T)
, 
top: Top
, 
pi1: fst(t)
, 
iff: P 
⇐⇒ Q
, 
groupoid-cat: cat(G)
, 
rev_implies: P 
⇐ Q
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
I-face: I-face(X;I)
, 
face-dimension: dimension(f)
, 
face-direction: direction(f)
, 
face-name: face-name(f)
, 
pi2: snd(t)
, 
sq_type: SQType(T)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
name-morph-flip: flip(f;y)
, 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
, 
label: ...$L... t
, 
l_subset: l_subset(T;as;bs)
, 
subtract: n - m
, 
cons: [a / b]
Lemmas referenced : 
decidable__l_exists_better-extract, 
I-face_wf, 
cubical-nerve_wf, 
pi1_wf_top, 
small-category_wf, 
not_wf, 
equal_wf, 
coordinate_name_wf, 
face-dimension_wf, 
equal-wf-base-T, 
face-direction_wf, 
subtype_rel_product, 
cat-ob_wf, 
cat-arrow_wf, 
cat-comp_wf, 
cat-id_wf, 
top_wf, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
decidable__cand, 
istype-void, 
decidable__not, 
decidable__equal-coordinate_name, 
decidable__equal_int_seg, 
extd-nameset-respects-equality, 
nil_wf, 
int_seg_wf, 
name-morph_wf, 
l_exists_wf, 
nameset_wf, 
l_member_wf, 
open_box_wf, 
subtype_rel_list, 
list_wf, 
groupoid_wf, 
l_exists_iff, 
same-face-edge-arrows-commute3, 
groupoid-cat_wf, 
l_all_iff, 
or_wf, 
decidable__or, 
l_member_subtype, 
extd-nameset-nil, 
select_wf, 
int_seg_properties, 
length_wf, 
sq_stable__l_member, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_base_sq, 
nameset_subtype_base, 
subtype_rel_universe1, 
all_wf, 
intformeq_wf, 
intformor_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_or_lemma, 
decidable__equal_int, 
istype-le, 
int_seg_subtype_nat, 
istype-false, 
istype-less_than, 
nat_properties, 
respects-equality-set-trivial2, 
not_functionality_wrt_implies, 
equal-wf-base, 
base_wf, 
equal_functionality_wrt_subtype_rel2, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
subtype_rel_self, 
pi2_wf, 
eq-cname_wf, 
eqtt_to_assert, 
assert-eq-cname, 
bool_wf, 
bool_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
iff_imp_equal_bool, 
istype-assert, 
groupoid-cube-lemma2, 
nerve_box_label_wf, 
assert_elim, 
null_wf3, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
name-morph-flip_wf, 
decidable__assert, 
nerve_box_edge_wf, 
int_seg_subtype_special, 
int_seg_cases, 
cat-square-commutes_wf, 
subtype_rel-equal, 
istype-universe, 
equal-wf-T-base, 
name-morph-flips-commute, 
same-face-square-commutes, 
select_member, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
member_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
name-morph-flip-flip, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
face-name_wf, 
decidable__equal_product
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
rename, 
setElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
instantiate, 
hypothesis, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
Error :memTop, 
lambdaEquality_alt, 
productEquality, 
applyEquality, 
because_Cache, 
cumulativity, 
setEquality, 
functionEquality, 
universeIsType, 
independent_isectElimination, 
setIsType, 
functionIsType, 
productIsType, 
equalityIstype, 
intEquality, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
imageElimination, 
unionElimination, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
voidElimination, 
equalityTransitivity, 
closedConclusion, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
dependent_pairFormation_alt, 
imageMemberEquality, 
applyLambdaEquality, 
approximateComputation, 
int_eqEquality, 
equalityIsType1, 
inrFormation_alt, 
equalityIsType4, 
unionIsType, 
inlFormation_alt, 
equalityIsType2, 
universeEquality, 
hyp_replacement, 
equalityElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityIsType3
Latex:
\mforall{}G:Groupoid.  \mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}box:open\_box(cubical-nerve(fst(G));I;J;x;i).
    ((\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))
    {}\mRightarrow{}  edge-arrows-commute(fst(G);I;\mlambda{}c.nerve\_box\_label(box;c);\mlambda{}y,c.  nerve\_box\_edge(box;c;y)))
Date html generated:
2020_05_21-AM-10_55_54
Last ObjectModification:
2020_01_03-AM-00_21_29
Theory : cubical!sets
Home
Index