Nuprl Lemma : sigmacomp_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (sigmacomp(Gamma;A;B;cA;cB) ∈ Gamma ⊢ CompOp(Σ A B))
Proof
Definitions occuring in Statement : 
sigmacomp: sigmacomp(Gamma;A;B;cA;cB), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-sigma: Σ A B, 
cube-context-adjoin: X.A, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
composition-op: Gamma ⊢ CompOp(A), 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
all: ∀x:A. B[x], 
sigmacomp: sigmacomp(Gamma;A;B;cA;cB), 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
subset-iota: iota, 
csm-comp: G o F, 
csm-ap-type: (AF)s, 
cc-fst: p, 
csm-ap: (s)x, 
compose: f o g, 
squash: ↓T, 
guard: {T}, 
true: True, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-sigma: Σ A B, 
pi1: fst(t), 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0), 
pi2: snd(t), 
cubical-type-ap-morph: (u a f), 
iff: P ⇐⇒ Q, 
filling-op: filling-op(Gamma;A), 
filling-uniformity: filling-uniformity(Gamma;A;fill), 
let: let, 
cubical-fst: p.1, 
csm-ap-term: (t)s, 
rev_implies: P ⇐ Q, 
cube-context-adjoin: X.A, 
context-map: <rho>, 
csm-adjoin: (s;u), 
functor-arrow: arrow(F), 
cc-adjoin-cube: (v;u), 
section-iota: section-iota(Gamma;A;I;rho;a), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cube-set-restriction: f(s), 
cubical-snd: p.2, 
cubical-type-at: A(a), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
sigmacomp_wf1, 
fill_from_comp_wf, 
cubical-path-0_wf, 
cubical-sigma_wf, 
cubical-type-cumulativity2, 
istype-cubical-term, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
names-hom_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-uniformity_wf, 
composition-op_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-sigma, 
cubical-fst_wf, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
cubical-term_wf, 
squash_wf, 
true_wf, 
equal_functionality_wrt_subtype_rel2, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cubical-path-condition_wf, 
cubical-subset-I_cube, 
pi1_wf_top, 
cubical-type-at_wf, 
nc-0_wf, 
equal_wf, 
istype-universe, 
cubical-fst-at, 
subtype_rel_self, 
iff_weakening_equal, 
cubical-type-ap-morph_wf, 
nc-1_wf, 
nc-e'_wf, 
subtype_rel-equal, 
nc-e'-lemma1, 
cubical-type-ap-morph-comp, 
nh-comp_wf, 
cube-set-restriction-comp, 
cubical-snd_wf, 
csm-id-adjoin-ap-type, 
cc-adjoin-cube_wf, 
cube_set_map_wf, 
csm-equal2, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
istype-cubical-type-at, 
cc-adjoin-cube-restriction, 
cubical-snd-at, 
fl-morph_wf, 
subset-trans_wf, 
fl-morph-restriction, 
nc-e'-lemma3, 
csm-ap-comp-type, 
subset-trans-iota-lemma, 
csm-ap-term_wf, 
nc-e'-lemma2, 
cubical-path-0-ap-morph, 
cubical-type-cumulativity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
dependent_set_memberEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
sqequalRule, 
inhabitedIsType, 
rename, 
setElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
instantiate, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
productElimination, 
imageElimination, 
cumulativity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
dependent_pairEquality_alt, 
productIsType, 
spreadEquality, 
productEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (sigmacomp(Gamma;A;B;cA;cB)  \mmember{}  Gamma  \mvdash{}  CompOp(\mSigma{}  A  B))
Date html generated:
2020_05_20-PM-04_06_20
Last ObjectModification:
2020_04_20-PM-04_57_23
Theory : cubical!type!theory
Home
Index