Nuprl Lemma : 0-dim-complex-polyhedron-decidable

k:ℕ. ∀K:0-dim-complex. ∀x,y:|K|.  Dec(x ≡ y)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) meq: x ≡ y nat: decidable: Dec(P) all: x:A. B[x] natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] req-vec: req-vec(n;x;y) rev_implies:  Q iff: ⇐⇒ Q uiff: uiff(P;Q) pi1: fst(t) rational-interval: Interval rational-cube: Cube(k) prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} rational-cube-complex: n-dim-complex real-vec: ^n exists: x:A. B[x] stable-union: Error :stable-union,  rat-cube-complex-polyhedron: |K| uimplies: supposing a subtype_rel: A ⊆B false: False implies:  Q not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  req-rat2real decidable__equal_rationals rationals_wf equal_wf req_wf decidable__all_int_seg meq-rn-prod-metric iff_weakening_uiff decidable_functionality rational-interval_wf int_seg_wf subtype_rel_self int_formula_prop_less_lemma intformless_wf length_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rational-cube_wf select_wf rat2real_wf req-vec_functionality req-vec_wf real-vec_wf metric-on-subtype rn-prod-metric_wf meq_wf istype-nat rational-cube-complex_wf istype-le istype-void rat-cube-complex-polyhedron_wf 0-dim-complex-polyhedron
Rules used in proof :  instantiate equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType functionEquality isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination imageElimination productElimination rename setElimination lambdaEquality_alt independent_isectElimination applyEquality voidElimination sqequalRule independent_pairFormation natural_numberEquality dependent_set_memberEquality_alt isectElimination universeIsType because_Cache hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:0-dim-complex.  \mforall{}x,y:|K|.    Dec(x  \mequiv{}  y)



Date html generated: 2019_10_30-AM-10_13_22
Last ObjectModification: 2019_10_28-PM-02_18_44

Theory : real!vectors


Home Index