Nuprl Lemma : 0-dim-complex-polyhedron-decidable
∀k:ℕ. ∀K:0-dim-complex. ∀x,y:|K|.  Dec(x ≡ y)
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
rn-prod-metric: rn-prod-metric(n)
, 
meq: x ≡ y
, 
nat: ℕ
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
req-vec: req-vec(n;x;y)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
rational-cube-complex: n-dim-complex
, 
real-vec: ℝ^n
, 
exists: ∃x:A. B[x]
, 
stable-union: Error :stable-union, 
rat-cube-complex-polyhedron: |K|
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req-rat2real, 
decidable__equal_rationals, 
rationals_wf, 
equal_wf, 
req_wf, 
decidable__all_int_seg, 
meq-rn-prod-metric, 
iff_weakening_uiff, 
decidable_functionality, 
rational-interval_wf, 
int_seg_wf, 
subtype_rel_self, 
int_formula_prop_less_lemma, 
intformless_wf, 
length_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
rational-cube_wf, 
select_wf, 
rat2real_wf, 
req-vec_functionality, 
req-vec_wf, 
real-vec_wf, 
metric-on-subtype, 
rn-prod-metric_wf, 
meq_wf, 
istype-nat, 
rational-cube-complex_wf, 
istype-le, 
istype-void, 
rat-cube-complex-polyhedron_wf, 
0-dim-complex-polyhedron
Rules used in proof : 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
inhabitedIsType, 
functionEquality, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
imageElimination, 
productElimination, 
rename, 
setElimination, 
lambdaEquality_alt, 
independent_isectElimination, 
applyEquality, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
isectElimination, 
universeIsType, 
because_Cache, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:0-dim-complex.  \mforall{}x,y:|K|.    Dec(x  \mequiv{}  y)
Date html generated:
2019_10_30-AM-10_13_22
Last ObjectModification:
2019_10_28-PM-02_18_44
Theory : real!vectors
Home
Index