Nuprl Lemma : rat-cube-third-exists

k:ℕ. ∀c:ℚCube(k).  ((↑Inhabited(c))  (∃p:ℝ^k. (in-rat-cube(k;p;c) ∧ rat-cube-third(k;p;c))))


Proof




Definitions occuring in Statement :  rat-cube-third: rat-cube-third(k;p;c) in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n nat: assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k)
Definitions unfolded in proof :  rdiv: (x/y) req_int_terms: t1 ≡ t2 nequal: a ≠ b ∈  int_nzero: -o sq_type: SQType(T) decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  top: Top rat-interval-third: rat-interval-third(p;I) rat-cube-third: rat-cube-third(k;p;c) not: ¬A false: False inhabited-rat-interval: Inhabited(I) rational-cube: Cube(k) in-rat-cube: in-rat-cube(k;p;c) cand: c∧ B nat: prop: le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y pi2: snd(t) pi1: fst(t) rational-interval: Interval real-vec: ^n exists: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  real_term_value_add_lemma int-rinv-cancel rmul-rinv3 radd_functionality req_transitivity real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null rleq_functionality req-iff-rsub-is-0 rsub_wf rleq-implies-rleq nequal_wf int_term_value_mul_lemma int_formula_prop_not_lemma intformnot_wf decidable__equal_int int_subtype_base subtype_base_sq itermAdd_wf rinv_wf2 rmul_preserves_rleq itermVar_wf itermMultiply_wf itermSubtract_wf istype-nat rational-cube_wf inhabited-rat-cube_wf rat-cube-third_wf in-rat-cube_wf rleq_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma istype-int itermConstant_wf intformeq_wf full-omega-unsat nat_properties int_seg_properties rneq-int req_wf req_weakening istype-void member_rccint_lemma q_le_wf istype-assert iff_weakening_equal assert-q_le-eq qle_wf istype-false rleq-int rmul_preserves_rleq2 rleq-rat2real int_seg_wf rless_wf rless-int rat2real_wf int-to-real_wf rmul_wf radd_wf rdiv_wf assert-inhabited-rat-cube
Rules used in proof :  int_eqEquality dependent_set_memberEquality_alt unionElimination intEquality cumulativity instantiate productIsType sqequalBase approximateComputation imageElimination inlFormation_alt voidElimination isect_memberEquality_alt applyEquality rename setElimination universeIsType baseClosed imageMemberEquality independent_pairFormation inrFormation_alt independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType because_Cache natural_numberEquality closedConclusion lambdaEquality_alt sqequalRule dependent_pairFormation_alt independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (\mexists{}p:\mBbbR{}\^{}k.  (in-rat-cube(k;p;c)  \mwedge{}  rat-cube-third(k;p;c))))



Date html generated: 2019_10_31-AM-06_03_51
Last ObjectModification: 2019_10_30-PM-03_36_41

Theory : real!vectors


Home Index