Nuprl Lemma : ireal-approx-radd-int

[x,y:ℝ]. ∀[j:ℕ]. ∀[M:ℕ+]. ∀[a,n:ℤ].  (j-approx(x;M;a)  j-approx(x r(n);M;a (2 M)))


Proof




Definitions occuring in Statement :  ireal-approx: j-approx(x;M;z) radd: b int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] implies:  Q multiply: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q ireal-approx: j-approx(x;M;z) prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False nat: nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) less_than: a < b squash: T less_than': less_than'(a;b) true: True rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  ireal-approx_wf less_than'_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rabs_wf radd_wf itermMultiply_wf int_term_value_mul_lemma nat_plus_wf nat_wf real_wf rmul_preserves_req rmul_wf rinv_wf2 rneq_functionality rmul-int req_weakening rneq-int intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base itermSubtract_wf req-iff-rsub-is-0 rmul-one itermAdd_wf radd_comm req_functionality req_transitivity rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul rmul-rinv rmul-rinv3 radd-int radd_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma rleq_functionality rabs_functionality rsub_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename independent_isectElimination inrFormation independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation addEquality multiplyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[j:\mBbbN{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[a,n:\mBbbZ{}].    (j-approx(x;M;a)  {}\mRightarrow{}  j-approx(x  +  r(n);M;a  +  (2  *  n  *  M)))



Date html generated: 2018_05_22-PM-01_59_36
Last ObjectModification: 2017_10_25-PM-01_04_53

Theory : reals


Home Index