Nuprl Lemma : ireal-approx-radd-int
∀[x,y:ℝ]. ∀[j:ℕ]. ∀[M:ℕ+]. ∀[a,n:ℤ].  (j-approx(x;M;a) 
⇒ j-approx(x + r(n);M;a + (2 * n * M)))
Proof
Definitions occuring in Statement : 
ireal-approx: j-approx(x;M;z)
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
ireal-approx: j-approx(x;M;z)
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
ireal-approx_wf, 
less_than'_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rabs_wf, 
radd_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
nat_plus_wf, 
nat_wf, 
real_wf, 
rmul_preserves_req, 
rmul_wf, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
req_weakening, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
rmul-one, 
itermAdd_wf, 
radd_comm, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3, 
radd-int, 
radd_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
addEquality, 
multiplyEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[j:\mBbbN{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[a,n:\mBbbZ{}].    (j-approx(x;M;a)  {}\mRightarrow{}  j-approx(x  +  r(n);M;a  +  (2  *  n  *  M)))
Date html generated:
2018_05_22-PM-01_59_36
Last ObjectModification:
2017_10_25-PM-01_04_53
Theory : reals
Home
Index