Nuprl Lemma : series-sum-constant
∀x:ℝ. Σi.if (i =z 0) then x else r0 fi  = x
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a, 
int-to-real: r(n), 
real: ℝ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
series-sum: Σn.x[n] = a, 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
so_apply: x[s], 
guard: {T}, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
subtype_rel: A ⊆r B, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
pointwise-req: x[k] = y[k] for k ∈ [n,m], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
constant-limit, 
req_weakening, 
real_wf, 
nat_wf, 
rsum_wf, 
ifthenelse_wf, 
eq_int_wf, 
int-to-real_wf, 
int_seg_wf, 
converges-to_functionality, 
radd_wf, 
subtract_wf, 
false_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
rsum-split-shift, 
req_functionality, 
radd_functionality, 
rsum-single, 
rsum_functionality, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
le_wf, 
rmul_wf, 
req_wf, 
rsum-constant, 
uiff_transitivity, 
rmul-zero-both, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
addEquality, 
independent_pairFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
setEquality, 
applyEquality, 
baseClosed, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}x:\mBbbR{}.  \mSigma{}i.if  (i  =\msubz{}  0)  then  x  else  r0  fi    =  x
Date html generated:
2017_10_03-AM-09_17_49
Last ObjectModification:
2017_07_28-AM-07_43_11
Theory : reals
Home
Index