Nuprl Lemma : series-sum-constant

x:ℝ. Σi.if (i =z 0) then else r0 fi  x


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a int-to-real: r(n) real: ifthenelse: if then else fi  eq_int: (i =z j) all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  series-sum: Σn.x[n] a all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uall: [x:A]. B[x] uimplies: supposing a nat: so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] guard: {T} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  constant-limit req_weakening real_wf nat_wf rsum_wf ifthenelse_wf eq_int_wf int-to-real_wf int_seg_wf converges-to_functionality radd_wf subtract_wf false_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal-wf-base int_subtype_base rsum-split-shift req_functionality radd_functionality rsum-single rsum_functionality bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int le_wf rmul_wf req_wf rsum-constant uiff_transitivity rmul-zero-both radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache productElimination independent_functionElimination isectElimination independent_isectElimination hypothesis lambdaEquality natural_numberEquality setElimination rename addEquality independent_pairFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll setEquality applyEquality baseClosed equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}x:\mBbbR{}.  \mSigma{}i.if  (i  =\msubz{}  0)  then  x  else  r0  fi    =  x



Date html generated: 2017_10_03-AM-09_17_49
Last ObjectModification: 2017_07_28-AM-07_43_11

Theory : reals


Home Index