Nuprl Lemma : coW-is-W
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  w ∈ W(A;a.B[a]) supposing coW-wfdd(a.B[a];w)
Proof
Definitions occuring in Statement : 
coW-wfdd: coW-wfdd(a.B[a];w), 
coW: coW(A;a.B[a]), 
W: W(A;a.B[a]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
cand: A c∧ B, 
copath-extend: copath-extend(q;t), 
copath: copath(a.B[a];w), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
bfalse: ff, 
assert: ↑b, 
isr: isr(x), 
spreadn: spread3, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
let: let, 
pcw-partial: pcw-partial(path;n), 
pcw-pp-barred: Barred(pp), 
copath-nil: (), 
btrue: tt, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
pcw-path-coPath: pcw-path-coPath(n;p), 
pi1: fst(t), 
copath-length: copath-length(p), 
guard: {T}, 
true: True, 
top: Top, 
subtract: n - m, 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
coW-wfdd: coW-wfdd(a.B[a];w), 
exists: ∃x:A. B[x], 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
pcw-path: Path, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
squash: ↓T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
coW: coW(A;a.B[a]), 
param-W: pW, 
W: W(A;a.B[a]), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
member-less_than, 
le_antisymmetry_iff, 
not-equal-2, 
copath_wf, 
equal-wf-T-base, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
copath_length_nil_lemma, 
pcw-step_wf, 
bnot_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
decidable__int_equal, 
primrec-wf2, 
less_than_wf, 
set_wf, 
minus-minus, 
less-iff-le, 
subtract_wf, 
le_weakening2, 
not_wf, 
copathAgree_wf, 
copath-length_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
decidable__le, 
equal_wf, 
pcw-path-copathAgree, 
pcw-path-coPath_wf, 
coW_wf, 
coW-wfdd_wf, 
pcw-partial_wf, 
pcw-pp-barred_wf, 
nat_wf, 
exists_wf, 
squash_wf, 
all_wf, 
pcw-path_wf, 
le_wf, 
false_wf, 
it_wf, 
unit_wf2, 
pcw-step-agree_wf
Rules used in proof : 
independent_pairEquality, 
impliesFunctionality, 
equalityElimination, 
closedConclusion, 
baseApply, 
dependent_pairFormation, 
promote_hyp, 
minusEquality, 
voidEquality, 
voidElimination, 
unionElimination, 
addEquality, 
intEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionEquality, 
independent_pairFormation, 
natural_numberEquality, 
rename, 
setElimination, 
because_Cache, 
functionExtensionality, 
universeEquality, 
cumulativity, 
lambdaEquality, 
applyEquality, 
isectElimination, 
extract_by_obid, 
instantiate, 
baseClosed, 
thin, 
imageMemberEquality, 
imageElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
hypothesisEquality, 
dependent_set_memberEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    w  \mmember{}  W(A;a.B[a])  supposing  coW-wfdd(a.B[a];w)
Date html generated:
2018_07_25-PM-01_42_19
Last ObjectModification:
2018_07_23-PM-03_37_39
Theory : co-recursion
Home
Index