Nuprl Lemma : finite-Ramsey1

c:ℕ. ∀s:ℕc ⟶ ℕ.
  ∃N:ℕ+
   ∀g:ℕN ⟶ ℕN ⟶ ℕc. ∃i:ℕc. ∃f:ℕi ⟶ ℕN. (Inj(ℕi;ℕN;f) ∧ (∀a,b:ℕi.  (f a <  ((g (f a) (f b)) i ∈ ℤ))))


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat_plus: + nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  select: L[n] cons: [a b] compose: g int_upper: {i...} nequal: a ≠ b ∈  assert: b bnot: ¬bb subtract: m rev_implies:  Q iff: ⇐⇒ Q eq_int: (i =z j) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 inject: Inj(A;B;f) cand: c∧ B true: True less_than': less_than'(a;b) ge: i ≥  squash: T less_than: a < b nat_plus: + nat: sq_type: SQType(T) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  subtract-is-int-iff add-member-int_seg2 compose_wf iff_imp_equal_bool iff_functionality_wrt_iff istype-true assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff le_int_wf equal-wf-T-base bool_cases int_upper_properties nequal-le-implies upper_subtype_nat ifthenelse_wf length_of_nil_lemma length_of_cons_lemma nil_wf cons_wf add_nat_wf int_formual_prop_imp_lemma intformimplies_wf iff_weakening_equal true_wf squash_wf equal_wf istype-assert assert_of_bnot iff_transitivity uiff_transitivity not_wf bnot_wf neg_assert_of_eq_int list_wf le_weakening2 non_neg_length le_reflexive int_seg_subtype select-filter-from-upto-order-preserving filter_type add-is-int-iff subtype_rel_sets_simple select_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert int_formula_prop_or_lemma intformor_wf decidable__or assert_of_lt_int lt_int_wf btrue_wf int_seg_cases int_seg_subtype_special bfalse_wf bool_wf istype-universe length_wf l_member_wf filter_wf5 length_wf_nat length-from-upto le-add-cancel add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-le-2 subtype_rel_sets subtype_rel_list from-upto_wf filter-split-length false_wf assert_of_eq_int eqtt_to_assert eq_int_wf subtract_nat_wf identity-injection nat_plus_properties le_wf istype-false istype-nat int_term_value_add_lemma itermAdd_wf nat_properties primrec-wf2 lelt_wf equal-wf-base less_than_wf inject_wf nat_plus_wf nat_wf subtype_rel_self istype-less_than istype-le decidable__lt decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf int_subtype_base set_subtype_base subtype_base_sq subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma istype-int intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties
Rules used in proof :  inlFormation_alt inrFormation_alt isectIsType baseApply equalityIsType2 equalityIsType4 universeEquality minusEquality setEquality sqequalBase pointwiseFunctionality equalityElimination closedConclusion equalityIstype equalityIsType3 equalityIsType1 functionExtensionality baseClosed imageMemberEquality addEquality setIsType imageElimination productEquality functionEquality inhabitedIsType functionIsType intEquality cumulativity hypothesis_subsumption promote_hyp productIsType dependent_set_memberEquality_alt applyLambdaEquality equalitySymmetry equalityTransitivity because_Cache instantiate applyEquality unionElimination universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality hypothesisEquality hypothesis productElimination rename setElimination isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}c:\mBbbN{}.  \mforall{}s:\mBbbN{}c  {}\mrightarrow{}  \mBbbN{}.
    \mexists{}N:\mBbbN{}\msupplus{}
      \mforall{}g:\mBbbN{}N  {}\mrightarrow{}  \mBbbN{}N  {}\mrightarrow{}  \mBbbN{}c
          \mexists{}i:\mBbbN{}c.  \mexists{}f:\mBbbN{}s  i  {}\mrightarrow{}  \mBbbN{}N.  (Inj(\mBbbN{}s  i;\mBbbN{}N;f)  \mwedge{}  (\mforall{}a,b:\mBbbN{}s  i.    (f  a  <  f  b  {}\mRightarrow{}  ((g  (f  a)  (f  b))  =  i))))



Date html generated: 2019_10_15-AM-10_27_36
Last ObjectModification: 2019_09_26-PM-04_40_18

Theory : continuity


Home Index