Nuprl Lemma : finite-Ramsey1
∀c:ℕ. ∀s:ℕc ⟶ ℕ.
  ∃N:ℕ+
   ∀g:ℕN ⟶ ℕN ⟶ ℕc. ∃i:ℕc. ∃f:ℕs i ⟶ ℕN. (Inj(ℕs i;ℕN;f) ∧ (∀a,b:ℕs i.  (f a < f b 
⇒ ((g (f a) (f b)) = i ∈ ℤ))))
Proof
Definitions occuring in Statement : 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
select: L[n]
, 
cons: [a / b]
, 
compose: f o g
, 
int_upper: {i...}
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
subtract: n - m
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
inject: Inj(A;B;f)
, 
cand: A c∧ B
, 
true: True
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtract-is-int-iff, 
add-member-int_seg2, 
compose_wf, 
iff_imp_equal_bool, 
iff_functionality_wrt_iff, 
istype-true, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
le_int_wf, 
equal-wf-T-base, 
bool_cases, 
int_upper_properties, 
nequal-le-implies, 
upper_subtype_nat, 
ifthenelse_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
nil_wf, 
cons_wf, 
add_nat_wf, 
int_formual_prop_imp_lemma, 
intformimplies_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
equal_wf, 
istype-assert, 
assert_of_bnot, 
iff_transitivity, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
neg_assert_of_eq_int, 
list_wf, 
le_weakening2, 
non_neg_length, 
le_reflexive, 
int_seg_subtype, 
select-filter-from-upto-order-preserving, 
filter_type, 
add-is-int-iff, 
subtype_rel_sets_simple, 
select_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_or_lemma, 
intformor_wf, 
decidable__or, 
assert_of_lt_int, 
lt_int_wf, 
btrue_wf, 
int_seg_cases, 
int_seg_subtype_special, 
bfalse_wf, 
bool_wf, 
istype-universe, 
length_wf, 
l_member_wf, 
filter_wf5, 
length_wf_nat, 
length-from-upto, 
le-add-cancel, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
subtype_rel_sets, 
subtype_rel_list, 
from-upto_wf, 
filter-split-length, 
false_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
subtract_nat_wf, 
identity-injection, 
nat_plus_properties, 
le_wf, 
istype-false, 
istype-nat, 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_properties, 
primrec-wf2, 
lelt_wf, 
equal-wf-base, 
less_than_wf, 
inject_wf, 
nat_plus_wf, 
nat_wf, 
subtype_rel_self, 
istype-less_than, 
istype-le, 
decidable__lt, 
decidable__le, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformeq_wf, 
intformnot_wf, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
subtract_wf, 
decidable__equal_int, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
int_seg_properties
Rules used in proof : 
inlFormation_alt, 
inrFormation_alt, 
isectIsType, 
baseApply, 
equalityIsType2, 
equalityIsType4, 
universeEquality, 
minusEquality, 
setEquality, 
sqequalBase, 
pointwiseFunctionality, 
equalityElimination, 
closedConclusion, 
equalityIstype, 
equalityIsType3, 
equalityIsType1, 
functionExtensionality, 
baseClosed, 
imageMemberEquality, 
addEquality, 
setIsType, 
imageElimination, 
productEquality, 
functionEquality, 
inhabitedIsType, 
functionIsType, 
intEquality, 
cumulativity, 
hypothesis_subsumption, 
promote_hyp, 
productIsType, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
instantiate, 
applyEquality, 
unionElimination, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
rename, 
setElimination, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}c:\mBbbN{}.  \mforall{}s:\mBbbN{}c  {}\mrightarrow{}  \mBbbN{}.
    \mexists{}N:\mBbbN{}\msupplus{}
      \mforall{}g:\mBbbN{}N  {}\mrightarrow{}  \mBbbN{}N  {}\mrightarrow{}  \mBbbN{}c
          \mexists{}i:\mBbbN{}c.  \mexists{}f:\mBbbN{}s  i  {}\mrightarrow{}  \mBbbN{}N.  (Inj(\mBbbN{}s  i;\mBbbN{}N;f)  \mwedge{}  (\mforall{}a,b:\mBbbN{}s  i.    (f  a  <  f  b  {}\mRightarrow{}  ((g  (f  a)  (f  b))  =  i))))
Date html generated:
2019_10_15-AM-10_27_36
Last ObjectModification:
2019_09_26-PM-04_40_18
Theory : continuity
Home
Index