Nuprl Lemma : unbounded-decidable-nset-infinite
∀K:Type. ((K ⊆r ℕ) ⇒ (∀l:ℕ. ((l ∈ K) ∨ (¬(l ∈ K)))) ⇒ (∀B:ℕ. ∃k:K. B < k) ⇒ (∃f:K ⟶ ℕ. Surj(K;ℕ;f)))
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f), 
nat: ℕ, 
less_than: a < b, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
upto: upto(n), 
uiff: uiff(P;Q), 
nat_plus: ℕ+, 
select: L[n], 
l_member: (x ∈ l), 
cons: [a / b], 
surject: Surj(A;B;f), 
respects-equality: respects-equality(S;T), 
sq_type: SQType(T), 
cand: A c∧ B, 
squash: ↓T, 
less_than: a < b, 
decidable: Dec(P), 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
istype: istype(T), 
prop: ℙ, 
less_than': less_than'(a;b), 
le: A ≤ B, 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
false: False, 
not: ¬A, 
bfalse: ff, 
rev_implies: P ⇐ Q, 
true: True, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isl: isl(x), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
null_nil_lemma, 
no_repeats-subtype, 
no_repeats_from-upto, 
no_repeats_filter, 
from-upto-member-nat, 
member_filter_2, 
subtype_rel_sets_simple, 
from-upto_wf, 
length-one-iff, 
subtract-add-cancel, 
length-append, 
filter_append_sq, 
zero-le-nat, 
from-upto-split, 
list_subtype_base, 
length_wf, 
cons_wf, 
false_wf, 
add-is-int-iff, 
nat_plus_properties, 
add_nat_plus, 
length_of_cons_lemma, 
product_subtype_list, 
nil_wf, 
length_of_nil_lemma, 
list-cases, 
member_filter, 
member_upto, 
exists_wf, 
decidable__equal_int, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
subtype-respects-equality, 
subtype_base_sq, 
le_witness_for_triv, 
decidable__lt, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
equal-wf-base, 
less_than_wf, 
primrec-wf2, 
subtract_wf, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
istype-universe, 
subtype_rel_wf, 
istype-less_than, 
surject_wf, 
istype-false, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_list, 
l_member_wf, 
bool_wf, 
subtype_rel_dep_function, 
subtype_rel_transitivity, 
upto_wf, 
filter_wf5, 
length_wf_nat, 
istype-assert, 
istype-void, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
istype-true, 
istype-nat, 
bfalse_wf, 
btrue_wf, 
nat_wf
Rules used in proof : 
Error :isectIsTypeImplies, 
axiomEquality, 
Error :isect_memberFormation_alt, 
pointwiseFunctionality, 
applyLambdaEquality, 
hypothesis_subsumption, 
minusEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
cumulativity, 
promote_hyp, 
imageElimination, 
Error :dependent_set_memberEquality_alt, 
productEquality, 
functionEquality, 
addEquality, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
universeEquality, 
instantiate, 
Error :unionIsType, 
Error :setIsType, 
setElimination, 
setEquality, 
productElimination, 
Error :productIsType, 
Error :functionIsType, 
sqequalBase, 
independent_isectElimination, 
intEquality, 
isectElimination, 
Error :universeIsType, 
voidElimination, 
natural_numberEquality, 
independent_pairFormation, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
Error :equalityIstype, 
unionElimination, 
extract_by_obid, 
introduction, 
equalitySymmetry, 
equalityTransitivity, 
Error :inhabitedIsType, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalHypSubstitution, 
functionExtensionality, 
sqequalRule, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :dependent_pairFormation_alt, 
rename, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Type
    ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K))))  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  \mexists{}k:K.  B  <  k)  {}\mRightarrow{}  (\mexists{}f:K  {}\mrightarrow{}  \mBbbN{}.  Surj(K;\mBbbN{};f)))
Date html generated:
2019_06_20-PM-03_02_26
Last ObjectModification:
2019_06_13-PM-07_17_10
Theory : continuity
Home
Index