Nuprl Lemma : finite-function-equipollent

n:ℕ+. ∀[F:ℕn ⟶ Type]. i:ℕn ⟶ F[i] i:ℕ1 ⟶ F[i] × F[n 1]


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat_plus: + equipollent: B exists: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True istype: istype(T) biject: Bij(A;B;f) inject: Inj(A;B;f) guard: {T} respects-equality: respects-equality(S;T) surject: Surj(A;B;f) pi1: fst(t) pi2: snd(t) sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  squash: T sq_stable: SqStable(P) bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  int_seg_wf istype-universe nat_plus_wf subtype_rel_dep_function subtract_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than int_seg_subtype istype-false decidable__le not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 intformle_wf int_formula_prop_le_lemma biject_wf respects-equality-product respects-equality-function respects-equality-trivial istype-base decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties intformeq_wf int_formula_prop_eq_lemma eq_int_wf subtype_rel-equal eqtt_to_assert assert_of_eq_int set_subtype_base less_than_wf sq_stable__and equal-wf-base sq_stable__equal eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int assert_wf equal_wf squash_wf true_wf eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal btrue_neq_bfalse bnot_wf not_wf istype-assert uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  Error :functionIsType,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis instantiate universeEquality Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  independent_pairEquality applyEquality sqequalRule because_Cache Error :dependent_set_memberEquality_alt,  productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  addEquality minusEquality multiplyEquality functionEquality productEquality closedConclusion Error :equalityIstype,  Error :inhabitedIsType,  equalityTransitivity equalitySymmetry sqequalBase applyLambdaEquality Error :functionExtensionality_alt,  cumulativity intEquality equalityElimination baseApply baseClosed imageMemberEquality imageElimination axiomEquality Error :functionIsTypeImplies,  promote_hyp

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  Type].  i:\mBbbN{}n  {}\mrightarrow{}  F[i]  \msim{}  i:\mBbbN{}n  -  1  {}\mrightarrow{}  F[i]  \mtimes{}  F[n  -  1]



Date html generated: 2019_06_20-PM-02_19_19
Last ObjectModification: 2018_12_19-PM-05_13_29

Theory : equipollence!!cardinality!


Home Index