Nuprl Lemma : mul-polynom_wf

[n:ℕ]. ∀[p,q:polyform(n)].  (mul-polynom(n;p;q) ∈ polyform(n))


Proof




Definitions occuring in Statement :  mul-polynom: mul-polynom(n;p;q) polyform: polyform(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: mul-polynom: mul-polynom(n;p;q) polyconst: polyconst(n;k) subtract: m has-value: (a)↓ le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B polyform: polyform(n) eq_int: (i =z j) decidable: Dec(P) nequal: a ≠ b ∈  so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf value-type-has-value polyform_wf istype-false le_wf polyform-value-type poly-zero_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot subtype_rel_self subtract-1-ge-0 decidable__le intformnot_wf int_formula_prop_not_lemma polyconst_wf eq_int_wf assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity intformeq_wf int_formula_prop_eq_lemma int_subtype_base neg_assert_of_eq_int int-value-type subtract_wf nat_wf nil_wf itermSubtract_wf int_term_value_subtract_lemma assert_wf bnot_wf not_wf equal-wf-base eager-accum_wf list_wf list-valueall-type valueall-type-polyform bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity add-polynom_wf1 btrue_wf null_wf equal-wf-T-base append_wf cons_wf map_wf assert_of_null subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  callbyvalueReduce sqleReflexivity Error :dependent_set_memberEquality_alt,  because_Cache unionElimination equalityElimination productElimination Error :equalityIsType1,  promote_hyp instantiate cumulativity multiplyEquality applyEquality intEquality int_eqReduceTrueSq Error :equalityIsType2,  baseApply closedConclusion baseClosed int_eqReduceFalseSq Error :equalityIsType4,  Error :equalityIsType3

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)].    (mul-polynom(n;p;q)  \mmember{}  polyform(n))



Date html generated: 2019_06_20-PM-01_53_01
Last ObjectModification: 2018_10_07-AM-00_23_34

Theory : integer!polynomials


Home Index