Nuprl Lemma : insert-int-sorted

[T:Type]. ∀[x:T]. ∀[l:T List].  sorted(insert-int(x;l)) supposing sorted(l) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  sorted: sorted(L) insert-int: insert-int(x;l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} prop: sorted: sorted(L) or: P ∨ Q cons: [a b] less_than': less_than'(a;b) not: ¬A colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B insert-int: insert-int(x;l) so_lambda: so_lambda3 top: Top so_apply: x[s1;s2;s3] int_seg: {i..j-} lelt: i ≤ j < k exists: x:A. B[x] nat_plus: + bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b l_member: (x ∈ l) select: L[n] l_all: (∀x∈L.P[x]) gt: i > j
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than le_witness_for_triv list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le decidable__equal_int subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus le_weakening2 istype-nat list_wf subtype_rel_wf istype-universe list_ind_nil_lemma select_wf cons_wf nil_wf less_than_transitivity2 length_wf length_of_cons_lemma length_of_nil_lemma less-iff-le le-add-cancel2 subtype_rel_transitivity base_wf equal_wf int_seg_wf less_than'_wf sorted_wf le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul false_wf omega-shadow less_than_wf mul-distributes mul-associates mul-commutes add-zero int_seg_properties sorted-cons insert-int-cons subtype_rel_list lt_int_wf eqtt_to_assert assert_of_lt_int insert-int_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf l_all_iff l_member_wf member-insert-int decidable__le not-le-2 decidable__lt not-lt-2 squash_wf true_wf istype-int subtype_rel_self iff_weakening_equal select-cons-tl not-gt-2 minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isectIsTypeImplies unionElimination promote_hyp hypothesis_subsumption Error :memTop,  equalityIstype because_Cache dependent_set_memberEquality_alt instantiate cumulativity intEquality imageMemberEquality baseClosed applyLambdaEquality addEquality minusEquality baseApply closedConclusion applyEquality sqequalBase universeEquality isect_memberEquality voidEquality isect_memberFormation lambdaFormation lambdaEquality dependent_pairFormation sqequalIntensionalEquality independent_pairEquality axiomEquality multiplyEquality dependent_set_memberEquality equalityElimination dependent_pairFormation_alt setEquality setIsType hyp_replacement productIsType

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    sorted(insert-int(x;l))  supposing  sorted(l)  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2020_05_19-PM-09_37_22
Last ObjectModification: 2019_12_31-PM-00_59_34

Theory : list_0


Home Index