Nuprl Lemma : flip-generators
∀n:ℕ
  ∀i,j:ℕn.  ∃L:𝔹 List. ((i, j) = reduce(λi,g. (if i then rot(n) else (0, 1) fi  o g);λx.x;L) ∈ (ℕn ⟶ ℕn)) supposing 1 <\000C n
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
rotate: rot(n)
, 
reduce: reduce(f;k;as)
, 
list: T List
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
pi1: fst(t)
, 
concat: concat(ll)
, 
cons: [a / b]
, 
colength: colength(L)
, 
nil: []
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
flip-adjacent, 
member-less_than, 
int_seg_wf, 
istype-less_than, 
istype-nat, 
flip-conjugate-rotate, 
subtract_wf, 
append_wf, 
bool_wf, 
primrec_wf, 
list_wf, 
int_seg_subtype_nat, 
istype-false, 
nil_wf, 
cons_wf, 
btrue_wf, 
bfalse_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
reduce_wf, 
eqtt_to_assert, 
compose_wf, 
rotate_wf, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
assert-bnot, 
flip_wf, 
decidable__lt, 
equal-wf-T-base, 
le_wf, 
reduce_cons_lemma, 
reduce_nil_lemma, 
reduce-append, 
ge_wf, 
primrec0_lemma, 
fun_exp0_lemma, 
subtract-1-ge-0, 
primrec-unroll, 
lt_int_wf, 
equal-wf-base, 
assert_wf, 
less_than_wf, 
le_int_wf, 
bnot_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
fun_exp_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fun_exp_add_apply1, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
uiff_transitivity, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
concat_wf, 
map_wf, 
list-cases, 
map_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
spread_cons_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
map_cons_lemma, 
equal-wf-base-T
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
Error :isect_memberFormation_alt, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
promote_hyp, 
productElimination, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :dependent_pairFormation_alt, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
functionEquality, 
equalityElimination, 
Error :equalityIsType4, 
instantiate, 
cumulativity, 
Error :productIsType, 
Error :equalityIsType1, 
sqequalBase, 
hyp_replacement, 
applyLambdaEquality, 
intWeakElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :functionExtensionality_alt, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
Error :functionIsType, 
functionExtensionality, 
hypothesis_subsumption
Latex:
\mforall{}n:\mBbbN{}
    \mforall{}i,j:\mBbbN{}n.    \mexists{}L:\mBbbB{}  List.  ((i,  j)  =  reduce(\mlambda{}i,g.  (if  i  then  rot(n)  else  (0,  1)  fi    o  g);\mlambda{}x.x;L)) 
    supposing  1  <  n
Date html generated:
2019_06_20-PM-01_36_43
Last ObjectModification:
2018_11_22-PM-10_09_18
Theory : list_1
Home
Index