Nuprl Lemma : flip-generators

n:ℕ
  ∀i,j:ℕn.  ∃L:𝔹 List. ((i, j) reduce(λi,g. (if then rot(n) else (0, 1) fi  g);λx.x;L) ∈ (ℕn ⟶ ℕn)) supposing 1 <\000C n


Proof




Definitions occuring in Statement :  flip: (i, j) rotate: rot(n) reduce: reduce(f;k;as) list: List compose: g int_seg: {i..j-} nat: ifthenelse: if then else fi  bool: 𝔹 less_than: a < b uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] nat: exists: x:A. B[x] subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b compose: g squash: T true: True iff: ⇐⇒ Q rev_implies:  Q subtract: m pi1: fst(t) concat: concat(ll) cons: [a b] colength: colength(L) nil: [] less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  flip-adjacent member-less_than int_seg_wf istype-less_than istype-nat flip-conjugate-rotate subtract_wf append_wf bool_wf primrec_wf list_wf int_seg_subtype_nat istype-false nil_wf cons_wf btrue_wf bfalse_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le set_subtype_base lelt_wf int_subtype_base reduce_wf eqtt_to_assert compose_wf rotate_wf eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq assert-bnot flip_wf decidable__lt equal-wf-T-base le_wf reduce_cons_lemma reduce_nil_lemma reduce-append ge_wf primrec0_lemma fun_exp0_lemma subtract-1-ge-0 primrec-unroll lt_int_wf equal-wf-base assert_wf less_than_wf le_int_wf bnot_wf equal_wf squash_wf true_wf istype-universe fun_exp_wf subtype_rel_self iff_weakening_equal fun_exp_add_apply1 add-associates add-swap add-commutes zero-add uiff_transitivity assert_of_lt_int assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int concat_wf map_wf list-cases map_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list intformeq_wf int_formula_prop_eq_lemma spread_cons_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma map_cons_lemma equal-wf-base-T
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality Error :isect_memberFormation_alt,  isectElimination natural_numberEquality setElimination rename independent_isectElimination promote_hyp productElimination Error :inhabitedIsType,  Error :universeIsType,  Error :dependent_pairFormation_alt,  because_Cache applyEquality sqequalRule independent_pairFormation Error :lambdaEquality_alt,  Error :dependent_set_memberEquality_alt,  unionElimination approximateComputation independent_functionElimination int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed intEquality functionEquality equalityElimination Error :equalityIsType4,  instantiate cumulativity Error :productIsType,  Error :equalityIsType1,  sqequalBase hyp_replacement applyLambdaEquality intWeakElimination axiomEquality Error :functionIsTypeImplies,  Error :functionExtensionality_alt,  imageElimination universeEquality imageMemberEquality Error :functionIsType,  functionExtensionality hypothesis_subsumption

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}i,j:\mBbbN{}n.    \mexists{}L:\mBbbB{}  List.  ((i,  j)  =  reduce(\mlambda{}i,g.  (if  i  then  rot(n)  else  (0,  1)  fi    o  g);\mlambda{}x.x;L)) 
    supposing  1  <  n



Date html generated: 2019_06_20-PM-01_36_43
Last ObjectModification: 2018_11_22-PM-10_09_18

Theory : list_1


Home Index