Nuprl Lemma : orbit-transitive

[T:Type]. ∀f:T ⟶ T. ∀L:T List.  (∀a∈L.(∀b∈L.∃n:ℕ((f^n a) b ∈ T))) supposing orbit(T;f;L)


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) l_all: (∀x∈L.P[x]) list: List fun_exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T orbit: orbit(T;f;L) and: P ∧ Q implies:  Q so_lambda: λ2x.t[x] prop: exists: x:A. B[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) cand: c∧ B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top squash: T less_than: a < b subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} int_seg: {i..j-} lelt: i ≤ j < k true: True subtract: m nat_plus: +
Lemmas referenced :  member-less_than length_wf no_repeats_witness l_all_iff l_all_wf nat_wf equal_wf fun_exp_wf l_member_wf exists_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf orbit_wf list_wf istype-universe int_formula_prop_less_lemma int_term_value_add_lemma intformless_wf itermAdd_wf bnot_wf less_than_wf lt_int_wf istype-le int_term_value_subtract_lemma itermSubtract_wf subtract_wf assert_wf int_subtype_base le_wf set_subtype_base bool_wf equal-wf-base le_int_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int squash_wf true_wf orbit-iterates istype-less_than subtype_rel_self iff_weakening_equal minus-one-mul add-swap add-mul-special zero-mul add-zero rem_base_case decidable__lt rem_bounds_1 trivial-equal zero-add add-associates rem_rec_case
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination natural_numberEquality hypothesisEquality hypothesis independent_isectElimination independent_functionElimination Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename productEquality applyEquality setElimination Error :setIsType,  Error :universeIsType,  because_Cache unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation hyp_replacement equalitySymmetry applyLambdaEquality Error :functionIsType,  instantiate universeEquality imageElimination addEquality Error :dependent_set_memberEquality_alt,  intEquality baseClosed closedConclusion baseApply equalityElimination Error :equalityIsType1,  equalityTransitivity Error :productIsType,  imageMemberEquality Error :equalityIstype

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}L:T  List.    (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.\mexists{}n:\mBbbN{}.  ((f\^{}n  a)  =  b)))  supposing  orbit(T;f;L)



Date html generated: 2019_06_20-PM-01_38_31
Last ObjectModification: 2019_03_06-AM-10_52_02

Theory : list_1


Home Index