Nuprl Lemma : orbit-transitive
∀[T:Type]. ∀f:T ⟶ T. ∀L:T List.  (∀a∈L.(∀b∈L.∃n:ℕ. ((f^n a) = b ∈ T))) supposing orbit(T;f;L)
Proof
Definitions occuring in Statement : 
orbit: orbit(T;f;L)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
fun_exp: f^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
orbit: orbit(T;f;L)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
squash: ↓T
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
subtract: n - m
, 
nat_plus: ℕ+
Lemmas referenced : 
member-less_than, 
length_wf, 
no_repeats_witness, 
l_all_iff, 
l_all_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf, 
l_member_wf, 
exists_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
orbit_wf, 
list_wf, 
istype-universe, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
intformless_wf, 
itermAdd_wf, 
bnot_wf, 
less_than_wf, 
lt_int_wf, 
istype-le, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
assert_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
bool_wf, 
equal-wf-base, 
le_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
squash_wf, 
true_wf, 
orbit-iterates, 
istype-less_than, 
subtype_rel_self, 
iff_weakening_equal, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
rem_base_case, 
decidable__lt, 
rem_bounds_1, 
trivial-equal, 
zero-add, 
add-associates, 
rem_rec_case
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
rename, 
productEquality, 
applyEquality, 
setElimination, 
Error :setIsType, 
Error :universeIsType, 
because_Cache, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
Error :functionIsType, 
instantiate, 
universeEquality, 
imageElimination, 
addEquality, 
Error :dependent_set_memberEquality_alt, 
intEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
Error :productIsType, 
imageMemberEquality, 
Error :equalityIstype
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}L:T  List.    (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.\mexists{}n:\mBbbN{}.  ((f\^{}n  a)  =  b)))  supposing  orbit(T;f;L)
Date html generated:
2019_06_20-PM-01_38_31
Last ObjectModification:
2019_03_06-AM-10_52_02
Theory : list_1
Home
Index