Nuprl Lemma : permutation-generators5

n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀i:ℕ1.  (P[f]  P[f (i, 1)]))
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} P[f]))


Proof




Definitions occuring in Statement :  flip: (i, j) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q uimplies: supposing a int_seg: {i..j-} so_apply: x[s] subtype_rel: A ⊆B nat: prop: guard: {T} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False less_than: a < b squash: T so_lambda: λ2x.t[x] cand: c∧ B uiff: uiff(P;Q) sq_type: SQType(T) true: True iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) less_than': less_than'(a;b) absval: |i| compose: g flip: (i, j) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  permutation-generators3 member-less_than istype-less_than int_seg_wf inject_wf subtract_wf subtype_rel_self compose-injections flip-injection nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le int_seg_properties decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma flip_wf identity-injection istype-nat le_witness_for_triv set_subtype_base lelt_wf int_subtype_base istype-void absval_wf primrec-wf2 all_wf isect_wf intformeq_wf int_formula_prop_eq_lemma absval_ubound decidable__equal_int subtype_base_sq itermMinus_wf int_term_value_minus_lemma equal_wf squash_wf true_wf istype-universe compose_wf flip_symmetry iff_weakening_equal sq_stable__inject nat_wf le_wf istype-false subtract-add-cancel eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int absval-diff-symmetry
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation_alt isectElimination independent_functionElimination setElimination rename independent_isectElimination universeIsType applyEquality because_Cache sqequalRule inhabitedIsType natural_numberEquality setIsType functionIsType instantiate universeEquality productElimination dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  voidElimination productIsType addEquality imageElimination independent_pairEquality functionIsTypeImplies equalityTransitivity equalitySymmetry equalityIstype intEquality sqequalBase isectIsType functionEquality cumulativity hyp_replacement applyLambdaEquality imageMemberEquality baseClosed minusEquality functionExtensionality equalityElimination promote_hyp baseApply closedConclusion

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  \mforall{}i:\mBbbN{}n  -  1.    (P[f]  {}\mRightarrow{}  P[f  o  (i,  i  +  1)]))
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))



Date html generated: 2020_05_19-PM-09_44_47
Last ObjectModification: 2020_01_04-PM-08_24_27

Theory : list_1


Home Index