Nuprl Lemma : lastn-as-accum

[A:Type]. ∀[n:ℤ]. ∀[L:A List].
  (lastn(n;L) accumulate (with value and list item x):
                 if ||b|| <then [x] else tl(b [x]) fi 
                over list:
                  L
                with starting value:
                 []))


Proof




Definitions occuring in Statement :  lastn: lastn(n;L) length: ||as|| append: as bs tl: tl(l) list_accum: list_accum cons: [a b] nil: [] list: List ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] int: universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B uimplies: supposing a top: Top nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A and: P ∧ Q prop: guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff true: True iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb assert: b nat_plus: + le: A ≤ B listp: List+
Lemmas referenced :  decidable__le list_wf lastn-0 subtype_rel_list top_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_accum_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_accum_cons_lemma length_of_nil_lemma list_ind_nil_lemma reduce_tl_cons_lemma lt_int_wf bool_wf equal-wf-base assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int lastn-nil length_wf append_nil_sq lastn-cases bnot_of_le_int ifthenelse_wf append_wf cons_wf nil_wf tl_wf squash_wf true_wf length_append iff_weakening_equal length-singleton bool_cases_sqequal bool_subtype_base assert-bnot length_tl listp_properties length-append length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt list_ind_cons_lemma non_neg_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination sqequalAxiom isectElimination cumulativity sqequalRule isect_memberEquality because_Cache intEquality universeEquality applyEquality independent_isectElimination lambdaEquality voidElimination voidEquality lambdaFormation setElimination rename intWeakElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll independent_functionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination baseApply closedConclusion equalityElimination imageMemberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbZ{}].  \mforall{}[L:A  List].
    (lastn(n;L)  \msim{}  accumulate  (with  value  b  and  list  item  x):
                                  if  ||b||  <z  n  then  b  @  [x]  else  tl(b  @  [x])  fi 
                                over  list:
                                    L
                                with  starting  value:
                                  []))



Date html generated: 2018_05_21-PM-06_42_55
Last ObjectModification: 2017_07_26-PM-04_54_30

Theory : general


Home Index