Nuprl Lemma : pa-int_wf

[p:{2...}]. ∀[k:ℤ].  (k(p) ∈ padic(p))


Proof




Definitions occuring in Statement :  pa-int: k(p) padic: padic(p) int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pa-int: k(p) padic: padic(p) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + int_upper: {i...} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B true: True eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  false_wf le_wf p-int_wf decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf p-adics_wf ifthenelse_wf eq_int_wf p-units_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache productElimination dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality instantiate universeEquality axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[k:\mBbbZ{}].    (k(p)  \mmember{}  padic(p))



Date html generated: 2018_05_21-PM-03_26_46
Last ObjectModification: 2018_05_19-AM-08_24_03

Theory : rings_1


Home Index