Nuprl Lemma : rng_of_alg_wf2
∀a:CRng. ∀m:algebra{i:l}(a).  (m↓rg ∈ Rng)
Proof
Definitions occuring in Statement : 
algebra: algebra{i:l}(A)
, 
rng_of_alg: a↓rg
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
algebra: algebra{i:l}(A)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
module: A-Module
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_of_alg: a↓rg
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
cand: A c∧ B
Lemmas referenced : 
algebra_wf, 
crng_wf, 
algebra_properties, 
set_wf, 
module_wf, 
monoid_p_wf, 
alg_car_wf, 
rng_car_wf, 
alg_times_wf, 
alg_one_wf, 
bilinear_wf, 
alg_plus_wf, 
all_wf, 
dist_1op_2op_lr_wf, 
alg_act_wf, 
module_properties, 
algebra_sig_wf, 
group_p_wf, 
alg_zero_wf, 
alg_minus_wf, 
comm_wf, 
action_p_wf, 
rng_times_wf, 
rng_one_wf, 
bilinear_p_wf, 
rng_plus_wf, 
rng_of_alg_wf, 
ring_p_wf, 
rng_zero_wf, 
rng_minus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
productElimination, 
instantiate, 
isectElimination, 
sqequalRule, 
productEquality, 
because_Cache, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation
Latex:
\mforall{}a:CRng.  \mforall{}m:algebra\{i:l\}(a).    (m\mdownarrow{}rg  \mmember{}  Rng)
Date html generated:
2016_05_16-AM-07_28_11
Last ObjectModification:
2015_12_28-PM-05_08_37
Theory : algebras_1
Home
Index