Nuprl Lemma : rng_of_alg_wf2

a:CRng. ∀m:algebra{i:l}(a).  (m↓rg ∈ Rng)


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) rng_of_alg: a↓rg all: x:A. B[x] member: t ∈ T crng: CRng rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T crng: CRng rng: Rng algebra: algebra{i:l}(A) and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] module: A-Module subtype_rel: A ⊆B prop: so_apply: x[s] ring_p: IsRing(T;plus;zero;neg;times;one) rng_of_alg: a↓rg rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 cand: c∧ B
Lemmas referenced :  algebra_wf crng_wf algebra_properties set_wf module_wf monoid_p_wf alg_car_wf rng_car_wf alg_times_wf alg_one_wf bilinear_wf alg_plus_wf all_wf dist_1op_2op_lr_wf alg_act_wf module_properties algebra_sig_wf group_p_wf alg_zero_wf alg_minus_wf comm_wf action_p_wf rng_times_wf rng_one_wf bilinear_p_wf rng_plus_wf rng_of_alg_wf ring_p_wf rng_zero_wf rng_minus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid dependent_functionElimination thin setElimination rename hypothesisEquality applyEquality lambdaEquality productElimination instantiate isectElimination sqequalRule productEquality because_Cache cumulativity universeEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation

Latex:
\mforall{}a:CRng.  \mforall{}m:algebra\{i:l\}(a).    (m\mdownarrow{}rg  \mmember{}  Rng)



Date html generated: 2016_05_16-AM-07_28_11
Last ObjectModification: 2015_12_28-PM-05_08_37

Theory : algebras_1


Home Index