Nuprl Lemma : is_ufm_wf

g:IMonoid. (IsUFM(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  is_ufm: IsUFM(g) prop: all: x:A. B[x] member: t ∈ T imon: IMonoid
Definitions unfolded in proof :  is_ufm: IsUFM(g) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] imon: IMonoid so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a matom_ty: Atom{g}
Lemmas referenced :  all_wf grp_car_wf not_wf munit_wf exists_uni_upto_wf list_wf matom_ty_wf permr_massoc_rel_wf subtype_rel_dep_function subtype_rel_list subtype_rel_self equal_wf mon_reduce_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaEquality functionEquality dependent_functionElimination because_Cache applyEquality instantiate cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}g:IMonoid.  (IsUFM(g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_45_21
Last ObjectModification: 2015_12_28-PM-05_53_34

Theory : factor_1


Home Index