Nuprl Lemma : posint_is_ufm
IsUFM(<ℤ+,*>)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
is_ufm: IsUFM(g)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
abmonoid: AbMon
, 
mon: Mon
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ufm_char, 
posint_mul_mon_wf, 
abmonoid_subtype_iabmonoid, 
matom_ty_wf, 
abmonoid_wf, 
grp_car_wf, 
posint_cancel, 
posint_well_fnd, 
posint_atom_imp_prime, 
posint_reduc_dec, 
posint_div_dec
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
lambdaFormation, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
because_Cache
Latex:
IsUFM(<\mBbbZ{}\msupplus{},*>)
Date html generated:
2016_05_16-AM-07_46_11
Last ObjectModification:
2015_12_28-PM-05_53_31
Theory : factor_1
Home
Index