Nuprl Lemma : posint_is_ufm

IsUFM(<ℤ+,*>)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> is_ufm: IsUFM(g)
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q abmonoid: AbMon mon: Mon uall: [x:A]. B[x]
Lemmas referenced :  ufm_char posint_mul_mon_wf abmonoid_subtype_iabmonoid matom_ty_wf abmonoid_wf grp_car_wf posint_cancel posint_well_fnd posint_atom_imp_prime posint_reduc_dec posint_div_dec
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis applyEquality sqequalRule independent_functionElimination lambdaFormation lambdaEquality setElimination rename hypothesisEquality isectElimination because_Cache

Latex:
IsUFM(<\mBbbZ{}\msupplus{},*>)



Date html generated: 2016_05_16-AM-07_46_11
Last ObjectModification: 2015_12_28-PM-05_53_31

Theory : factor_1


Home Index