Nuprl Lemma : posint_div_dec
∀a,b:|<ℤ+,*>|.  Dec(a | b)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>
, 
mdivides: b | a
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
grp_car: |g|
Definitions unfolded in proof : 
posint_mul_mon: <ℤ+,*>
, 
mdivides: b | a
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
nat_plus_wf, 
decidable__equal_int, 
remainder_wfa, 
nat_plus_inc_int_nzero, 
div_rem_sum, 
div_bounds_1, 
nat_plus_subtype_nat, 
nat_plus_properties, 
divide_wfa, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
nequal_wf, 
intformnot_wf, 
itermMultiply_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
decidable__lt, 
istype-less_than, 
set_subtype_base, 
less_than_wf, 
subtype_base_sq, 
intformle_wf, 
int_formula_prop_le_lemma, 
rem-exact
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
applyEquality, 
natural_numberEquality, 
unionElimination, 
inlFormation_alt, 
dependent_pairFormation_alt, 
because_Cache, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
equalityTransitivity, 
productElimination, 
functionIsType, 
productIsType, 
baseApply, 
closedConclusion, 
instantiate, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
equalityIsType4, 
inrFormation_alt
Latex:
\mforall{}a,b:|<\mBbbZ{}\msupplus{},*>|.    Dec(a  |  b)
Date html generated:
2019_10_16-PM-01_06_11
Last ObjectModification:
2019_06_20-PM-06_44_22
Theory : factor_1
Home
Index