Nuprl Lemma : posint_div_dec

a,b:|<ℤ+,*>|.  Dec(a b)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> mdivides: a decidable: Dec(P) all: x:A. B[x] grp_car: |g|
Definitions unfolded in proof :  posint_mul_mon: <ℤ+,*> mdivides: a grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} less_than: a < b squash: T
Lemmas referenced :  nat_plus_wf decidable__equal_int remainder_wfa nat_plus_inc_int_nzero div_rem_sum div_bounds_1 nat_plus_subtype_nat nat_plus_properties divide_wfa full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int_subtype_base nequal_wf intformnot_wf itermMultiply_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_mul_lemma int_term_value_add_lemma decidable__lt istype-less_than set_subtype_base less_than_wf subtype_base_sq intformle_wf int_formula_prop_le_lemma rem-exact
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename applyEquality natural_numberEquality unionElimination inlFormation_alt dependent_pairFormation_alt because_Cache multiplyEquality dependent_set_memberEquality_alt independent_isectElimination approximateComputation independent_functionElimination lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype baseClosed sqequalBase equalitySymmetry intEquality equalityTransitivity productElimination functionIsType productIsType baseApply closedConclusion instantiate cumulativity imageElimination imageMemberEquality equalityIsType4 inrFormation_alt

Latex:
\mforall{}a,b:|<\mBbbZ{}\msupplus{},*>|.    Dec(a  |  b)



Date html generated: 2019_10_16-PM-01_06_11
Last ObjectModification: 2019_06_20-PM-06_44_22

Theory : factor_1


Home Index