Nuprl Lemma : posint_atom_imp_prime
∀a:Atom{<ℤ+,*>}. IsPrime(a)
Proof
Definitions occuring in Statement : 
posint_mul_mon: <ℤ+,*>, 
matom_ty: Atom{g}, 
mprime: IsPrime(a), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
mprime: IsPrime(a), 
matom_ty: Atom{g}, 
posint_mul_mon: <ℤ+,*>, 
grp_car: |g|, 
pi1: fst(t), 
grp_op: *, 
pi2: snd(t), 
infix_ap: x f y, 
munit: g-unit(u), 
matomic: Atomic(a), 
grp_id: e, 
mreducible: Reducible(a), 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
divides: b | a, 
mdivides: b | a, 
iff: P ⇐⇒ Q, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
rev_implies: P ⇐ Q, 
gt: i > j, 
prime: prime(a), 
atomic: atomic(a), 
reducible: reducible(a), 
int_nzero: ℤ-o, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
nequal: a ≠ b ∈ T , 
le: A ≤ B, 
subtract: n - m, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nat: ℕ, 
sq_stable: SqStable(P), 
assoced: a ~ b
Lemmas referenced : 
mdivides_wf, 
posint_mul_mon_wf, 
less_than_wf, 
mul_nat_plus, 
nat_plus_wf, 
not_wf, 
exists_wf, 
equal-wf-base, 
set_subtype_base, 
istype-int, 
int_subtype_base, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
pos_mul_arg_bounds, 
decidable__lt, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
divides_wf, 
mon_subtype_grp_sig, 
abmonoid_subtype_mon, 
subtype_rel_transitivity, 
abmonoid_wf, 
mon_wf, 
grp_sig_wf, 
atomic_imp_prime, 
unit_chars, 
assoced_wf, 
reducible_wf, 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-false, 
not-lt-2, 
not-equal-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
minus-add, 
minus-zero, 
add-zero, 
eqff_to_assert, 
nequal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
int_nzero_properties, 
itermMinus_wf, 
int_term_value_minus_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
absval_pos, 
sq_stable__and, 
sq_stable__not, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_wf, 
one_divs_any, 
absval_wf, 
grp_car_wf, 
assoced_functionality_wrt_assoced, 
absval_assoced, 
assoced_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
sqequalHypSubstitution, 
productElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
inhabitedIsType, 
setIsType, 
productIsType, 
lambdaEquality_alt, 
productEquality, 
baseApply, 
closedConclusion, 
intEquality, 
independent_isectElimination, 
equalityIsType4, 
dependent_pairFormation_alt, 
applyLambdaEquality, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation_alt, 
instantiate, 
inrFormation_alt, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
imageElimination, 
addEquality, 
equalityIsType2, 
promote_hyp, 
cumulativity, 
equalityIsType1, 
universeEquality, 
functionIsTypeImplies
Latex:
\mforall{}a:Atom\{<\mBbbZ{}\msupplus{},*>\}.  IsPrime(a)
Date html generated:
2019_10_16-PM-01_06_16
Last ObjectModification:
2018_10_08-PM-05_38_49
Theory : factor_1
Home
Index