Nuprl Lemma : posint_atom_imp_prime

a:Atom{<ℤ+,*>}. IsPrime(a)


Proof




Definitions occuring in Statement :  posint_mul_mon: <ℤ+,*> matom_ty: Atom{g} mprime: IsPrime(a) all: x:A. B[x]
Definitions unfolded in proof :  mprime: IsPrime(a) matom_ty: Atom{g} posint_mul_mon: <ℤ+,*> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y munit: g-unit(u) matomic: Atomic(a) grp_id: e mreducible: Reducible(a) all: x:A. B[x] and: P ∧ Q cand: c∧ B not: ¬A implies:  Q false: False member: t ∈ T subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x] divides: a mdivides: a iff: ⇐⇒ Q guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_implies:  Q gt: i > j prime: prime(a) atomic: atomic(a) reducible: reducible(a) int_nzero: -o bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) nequal: a ≠ b ∈  le: A ≤ B subtract: m bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nat: sq_stable: SqStable(P) assoced: b
Lemmas referenced :  mdivides_wf posint_mul_mon_wf less_than_wf mul_nat_plus nat_plus_wf not_wf exists_wf equal-wf-base set_subtype_base istype-int int_subtype_base nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_wf pos_mul_arg_bounds decidable__lt intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma divides_wf mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf atomic_imp_prime unit_chars assoced_wf reducible_wf absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-false not-lt-2 not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-swap add-commutes zero-add le-add-cancel condition-implies-le minus-add minus-zero add-zero eqff_to_assert nequal_wf bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf int_nzero_properties itermMinus_wf int_term_value_minus_lemma equal_wf squash_wf true_wf istype-universe absval_mul subtype_rel_self iff_weakening_equal absval_pos sq_stable__and sq_stable__not decidable__le intformle_wf int_formula_prop_le_lemma le_wf one_divs_any absval_wf grp_car_wf assoced_functionality_wrt_assoced absval_assoced assoced_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut setElimination thin rename sqequalHypSubstitution productElimination hypothesis independent_functionElimination voidElimination universeIsType introduction extract_by_obid dependent_functionElimination applyEquality because_Cache hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation imageMemberEquality baseClosed isectElimination inhabitedIsType setIsType productIsType lambdaEquality_alt productEquality baseApply closedConclusion intEquality independent_isectElimination equalityIsType4 dependent_pairFormation_alt applyLambdaEquality unionElimination approximateComputation int_eqEquality isect_memberEquality_alt multiplyEquality equalityTransitivity equalitySymmetry inlFormation_alt instantiate inrFormation_alt minusEquality equalityElimination lessCases isect_memberFormation_alt axiomSqEquality imageElimination addEquality equalityIsType2 promote_hyp cumulativity equalityIsType1 universeEquality functionIsTypeImplies

Latex:
\mforall{}a:Atom\{<\mBbbZ{}\msupplus{},*>\}.  IsPrime(a)



Date html generated: 2019_10_16-PM-01_06_16
Last ObjectModification: 2018_10_08-PM-05_38_49

Theory : factor_1


Home Index