Nuprl Lemma : ufm_char

g:IAbMonoid
  (Cancel(|g|;|g|;*)
   WellFnd{i}(|g|;x,y.x p| y)
   (∀a:Atom{g}. IsPrime(a))
   (∀a:|g|. Dec(Reducible(a)))
   (∀a,b:|g|.  Dec(a b))
   IsUFM(g))


Proof




Definitions occuring in Statement :  is_ufm: IsUFM(g) matom_ty: Atom{g} mreducible: Reducible(a) mprime: IsPrime(a) mpdivides: p| b mdivides: a wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] matom_ty: Atom{g} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] is_ufm: IsUFM(g) subtype_rel: A ⊆B uimplies: supposing a permr_massoc_rel: ~ ab_binrel: x,y:T. E[x; y] binrel_ap: [r] b mprime_ty: Prime(g) guard: {T}
Lemmas referenced :  all_wf grp_car_wf decidable_wf mdivides_wf mreducible_wf matom_ty_wf mprime_wf wellfounded_wf mpdivides_wf cancel_wf grp_op_wf iabmonoid_wf not_wf munit_wf exists_uni_upto_char list_wf permr_massoc_rel_wf subtype_rel_dep_function subtype_rel_list subtype_rel_self equal_wf mon_reduce_wf mfact_exists unique_mfact mprime_ty_wf subtype_rel_sets matomic_wf massoc_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache dependent_functionElimination applyEquality instantiate cumulativity functionEquality universeEquality independent_isectElimination independent_functionElimination setEquality dependent_set_memberEquality equalitySymmetry equalityTransitivity

Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}a:Atom\{g\}.  IsPrime(a))
    {}\mRightarrow{}  (\mforall{}a:|g|.  Dec(Reducible(a)))
    {}\mRightarrow{}  (\mforall{}a,b:|g|.    Dec(a  |  b))
    {}\mRightarrow{}  IsUFM(g))



Date html generated: 2016_05_16-AM-07_45_26
Last ObjectModification: 2015_12_28-PM-05_54_11

Theory : factor_1


Home Index