Nuprl Lemma : ufm_char
∀g:IAbMonoid
  (Cancel(|g|;|g|;*)
  ⇒ WellFnd{i}(|g|;x,y.x p| y)
  ⇒ (∀a:Atom{g}. IsPrime(a))
  ⇒ (∀a:|g|. Dec(Reducible(a)))
  ⇒ (∀a,b:|g|.  Dec(a | b))
  ⇒ IsUFM(g))
Proof
Definitions occuring in Statement : 
is_ufm: IsUFM(g), 
matom_ty: Atom{g}, 
mreducible: Reducible(a), 
mprime: IsPrime(a), 
mpdivides: a p| b, 
mdivides: b | a, 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
decidable: Dec(P), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iabmonoid: IAbMonoid, 
grp_op: *, 
grp_car: |g|, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
matom_ty: Atom{g}, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
is_ufm: IsUFM(g), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
permr_massoc_rel: ≡~, 
ab_binrel: x,y:T. E[x; y], 
binrel_ap: a [r] b, 
mprime_ty: Prime(g), 
guard: {T}
Lemmas referenced : 
all_wf, 
grp_car_wf, 
decidable_wf, 
mdivides_wf, 
mreducible_wf, 
matom_ty_wf, 
mprime_wf, 
wellfounded_wf, 
mpdivides_wf, 
cancel_wf, 
grp_op_wf, 
iabmonoid_wf, 
not_wf, 
munit_wf, 
exists_uni_upto_char, 
list_wf, 
permr_massoc_rel_wf, 
subtype_rel_dep_function, 
subtype_rel_list, 
subtype_rel_self, 
equal_wf, 
mon_reduce_wf, 
mfact_exists, 
unique_mfact, 
mprime_ty_wf, 
subtype_rel_sets, 
matomic_wf, 
massoc_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
dependent_functionElimination, 
applyEquality, 
instantiate, 
cumulativity, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
setEquality, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  WellFnd\{i\}(|g|;x,y.x  p|  y)
    {}\mRightarrow{}  (\mforall{}a:Atom\{g\}.  IsPrime(a))
    {}\mRightarrow{}  (\mforall{}a:|g|.  Dec(Reducible(a)))
    {}\mRightarrow{}  (\mforall{}a,b:|g|.    Dec(a  |  b))
    {}\mRightarrow{}  IsUFM(g))
Date html generated:
2016_05_16-AM-07_45_26
Last ObjectModification:
2015_12_28-PM-05_54_11
Theory : factor_1
Home
Index