Nuprl Lemma : unique_mfact

g:IAbMonoid
  (Cancel(|g|;|g|;*)  (∀a,b:|g|.  Dec(a b))  (∀ps,qs:Prime(g) List.  (((Π ps) (Π qs))  ps ≡ qs upto ~)))


Proof




Definitions occuring in Statement :  permr_massoc: as ≡ bs upto ~ mprime_ty: Prime(g) massoc: b mdivides: a mon_reduce: mon_reduce list: List decidable: Dec(P) all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B uimplies: supposing a mprime_ty: Prime(g) so_apply: x[s] mon_reduce: mon_reduce top: Top infix_ap: y massoc: b symmetrize: Symmetrize(x,y.R[x; y];a;b) and: P ∧ Q munit: g-unit(u) or: P ∨ Q cons: [a b] false: False mprime: IsPrime(a) not: ¬A mdivides: a exists: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q sq_stable: SqStable(P) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b stable: Stable{P} rev_implies:  Q
Lemmas referenced :  list_induction mprime_ty_wf all_wf list_wf massoc_wf mon_reduce_wf subtype_rel_list grp_car_wf permr_massoc_wf reduce_nil_lemma istype-void grp_id_wf reduce_cons_lemma grp_op_wf decidable_wf mdivides_wf cancel_wf iabmonoid_wf list-cases product_subtype_list permr_massoc_weakening nil_wf permr_weakening munit_of_op equal_wf squash_wf true_wf istype-universe mon_assoc subtype_rel_self iff_weakening_equal mprime_divs_list_el sq_stable__mprime mdivisor_of_atom_is_assoc2 select_wf int_seg_properties length_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma mprime_imp_matomic not_wf munit_wf permr_massoc_functionality cons_wf reject_wf permr_inversion select_reject_permr grp_sig_wf mon_reduce_functionality_wrt_permr massoc_functionality_wrt_massoc grp_op_functionality_wrt_massoc massoc_weakening massoc_cancel cons_functionality_wrt_permr_massoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination setElimination rename because_Cache hypothesis sqequalRule lambdaEquality_alt functionEquality hypothesisEquality applyEquality independent_isectElimination universeIsType inhabitedIsType independent_functionElimination isect_memberEquality_alt voidElimination functionIsType productElimination unionElimination promote_hyp hypothesis_subsumption dependent_pairFormation_alt imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed instantiate equalityIsType1 approximateComputation int_eqEquality independent_pairFormation isect_memberFormation_alt functionIsTypeImplies applyLambdaEquality

Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  (\mforall{}a,b:|g|.    Dec(a  |  b))
    {}\mRightarrow{}  (\mforall{}ps,qs:Prime(g)  List.    (((\mPi{}  ps)  \msim{}  (\mPi{}  qs))  {}\mRightarrow{}  ps  \mequiv{}  qs  upto  \msim{})))



Date html generated: 2019_10_16-PM-01_05_58
Last ObjectModification: 2018_10_08-PM-00_12_50

Theory : factor_1


Home Index