Nuprl Lemma : unique_mfact
∀g:IAbMonoid
  (Cancel(|g|;|g|;*) ⇒ (∀a,b:|g|.  Dec(a | b)) ⇒ (∀ps,qs:Prime(g) List.  (((Π ps) ~ (Π qs)) ⇒ ps ≡ qs upto ~)))
Proof
Definitions occuring in Statement : 
permr_massoc: as ≡ bs upto ~, 
mprime_ty: Prime(g), 
massoc: a ~ b, 
mdivides: b | a, 
mon_reduce: mon_reduce, 
list: T List, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iabmonoid: IAbMonoid, 
grp_op: *, 
grp_car: |g|, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
mprime_ty: Prime(g), 
so_apply: x[s], 
mon_reduce: mon_reduce, 
top: Top, 
infix_ap: x f y, 
massoc: a ~ b, 
symmetrize: Symmetrize(x,y.R[x; y];a;b), 
and: P ∧ Q, 
munit: g-unit(u), 
or: P ∨ Q, 
cons: [a / b], 
false: False, 
mprime: IsPrime(a), 
not: ¬A, 
mdivides: b | a, 
exists: ∃x:A. B[x], 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
sq_stable: SqStable(P), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
less_than: a < b, 
stable: Stable{P}, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
mprime_ty_wf, 
all_wf, 
list_wf, 
massoc_wf, 
mon_reduce_wf, 
subtype_rel_list, 
grp_car_wf, 
permr_massoc_wf, 
reduce_nil_lemma, 
istype-void, 
grp_id_wf, 
reduce_cons_lemma, 
grp_op_wf, 
decidable_wf, 
mdivides_wf, 
cancel_wf, 
iabmonoid_wf, 
list-cases, 
product_subtype_list, 
permr_massoc_weakening, 
nil_wf, 
permr_weakening, 
munit_of_op, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mon_assoc, 
subtype_rel_self, 
iff_weakening_equal, 
mprime_divs_list_el, 
sq_stable__mprime, 
mdivisor_of_atom_is_assoc2, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
mprime_imp_matomic, 
not_wf, 
munit_wf, 
permr_massoc_functionality, 
cons_wf, 
reject_wf, 
permr_inversion, 
select_reject_permr, 
grp_sig_wf, 
mon_reduce_functionality_wrt_permr, 
massoc_functionality_wrt_massoc, 
grp_op_functionality_wrt_massoc, 
massoc_weakening, 
massoc_cancel, 
cons_functionality_wrt_permr_massoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
productElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_pairFormation_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
equalityIsType1, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
isect_memberFormation_alt, 
functionIsTypeImplies, 
applyLambdaEquality
Latex:
\mforall{}g:IAbMonoid
    (Cancel(|g|;|g|;*)
    {}\mRightarrow{}  (\mforall{}a,b:|g|.    Dec(a  |  b))
    {}\mRightarrow{}  (\mforall{}ps,qs:Prime(g)  List.    (((\mPi{}  ps)  \msim{}  (\mPi{}  qs))  {}\mRightarrow{}  ps  \mequiv{}  qs  upto  \msim{})))
Date html generated:
2019_10_16-PM-01_05_58
Last ObjectModification:
2018_10_08-PM-00_12_50
Theory : factor_1
Home
Index