Nuprl Lemma : select_reject_permr
∀T:Type. ∀as:T List. ∀i:ℕ||as||.  ([as[i] / as\[i]] ≡(T) as)
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
select: L[n]
, 
length: ||as||
, 
reject: as\[i]
, 
cons: [a / b]
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
Lemmas referenced : 
int_seg_wf, 
length_wf, 
list_wf, 
list_induction, 
all_wf, 
permr_wf, 
cons_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
reject_wf, 
nil_wf, 
length_of_nil_lemma, 
decidable__equal_int, 
length_of_cons_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
squash_wf, 
true_wf, 
select_cons_hd, 
reject_cons_hd, 
subtype_rel_self, 
iff_weakening_equal, 
permr_weakening, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
select_cons_tl, 
reject_cons_tl, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
permr_functionality_wrt_permr, 
hd_two_swap_permr, 
lelt_wf, 
permr_reflex, 
cons_functionality_wrt_permr
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
dependent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
dependent_set_memberEquality
Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}i:\mBbbN{}||as||.    ([as[i]  /  as\mbackslash{}[i]]  \mequiv{}(T)  as)
Date html generated:
2018_05_22-AM-07_45_08
Last ObjectModification:
2018_05_19-AM-08_31_58
Theory : list_2
Home
Index