Nuprl Lemma : select_reject_permr

T:Type. ∀as:T List. ∀i:ℕ||as||.  ([as[i] as\[i]] ≡(T) as)


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs select: L[n] length: ||as|| reject: as\[i] cons: [a b] list: List int_seg: {i..j-} all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b squash: T so_apply: x[s] true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  le: A ≤ B
Lemmas referenced :  int_seg_wf length_wf list_wf list_induction all_wf permr_wf cons_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma reject_wf nil_wf length_of_nil_lemma decidable__equal_int length_of_cons_lemma intformeq_wf int_formula_prop_eq_lemma squash_wf true_wf select_cons_hd reject_cons_hd subtype_rel_self iff_weakening_equal permr_weakening non_neg_length itermAdd_wf int_term_value_add_lemma select_cons_tl reject_cons_tl subtract_wf itermSubtract_wf int_term_value_subtract_lemma permr_functionality_wrt_permr hd_two_swap_permr lelt_wf permr_reflex cons_functionality_wrt_permr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis universeEquality sqequalRule lambdaEquality cumulativity dependent_functionElimination because_Cache setElimination rename independent_isectElimination productElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination equalityTransitivity equalitySymmetry addEquality applyEquality imageMemberEquality baseClosed instantiate dependent_set_memberEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}i:\mBbbN{}||as||.    ([as[i]  /  as\mbackslash{}[i]]  \mequiv{}(T)  as)



Date html generated: 2018_05_22-AM-07_45_08
Last ObjectModification: 2018_05_19-AM-08_31_58

Theory : list_2


Home Index