Nuprl Lemma : reject_cons_hd

[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].  [a as]\[i] as ∈ (T List) supposing i ≤ 0


Proof




Definitions occuring in Statement :  reject: as\[i] cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B all: x:A. B[x] top: Top le: A ≤ B and: P ∧ Q false: False guard: {T} uimplies: supposing a implies:  Q reject: as\[i] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff prop:
Lemmas referenced :  le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf reduce_tl_cons_lemma lt_int_wf less_than_wf bnot_wf less_than_transitivity1 less_than_irreflexivity uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination independent_isectElimination independent_functionElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry Error :universeIsType,  intEquality universeEquality Error :isect_memberFormation_alt,  axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].    [a  /  as]\mbackslash{}[i]  =  as  supposing  i  \mleq{}  0



Date html generated: 2019_06_20-PM-00_39_08
Last ObjectModification: 2018_09_26-PM-02_07_31

Theory : list_0


Home Index