Nuprl Lemma : reject_cons_hd
∀[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].  [a / as]\[i] = as ∈ (T List) supposing i ≤ 0
Proof
Definitions occuring in Statement : 
reject: as\[i], 
cons: [a / b], 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
top: Top, 
le: A ≤ B, 
and: P ∧ Q, 
false: False, 
guard: {T}, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
reject: as\[i], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ
Lemmas referenced : 
le_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_wf, 
reduce_tl_cons_lemma, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
intEquality, 
universeEquality, 
Error :isect_memberFormation_alt, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].    [a  /  as]\mbackslash{}[i]  =  as  supposing  i  \mleq{}  0
Date html generated:
2019_06_20-PM-00_39_08
Last ObjectModification:
2018_09_26-PM-02_07_31
Theory : list_0
Home
Index